login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Associated Stirling numbers.
(Formerly M3075 N1248)
9

%I M3075 N1248 #52 Sep 25 2016 04:37:26

%S 3,20,130,924,7308,64224,623376,6636960,76998240,967524480,

%T 13096736640,190060335360,2944310342400,48503818137600,

%U 846795372595200,15618926924697600,303517672703078400,6198400928176128000,132720966600284160000,2973385109386137600000

%N Associated Stirling numbers.

%C a(n) is also the number of permutations of n elements, without any fixed point, with exactly two cycles. - _Shanzhen Gao_, Sep 15 2010

%D L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 256.

%D J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 75.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%D Shanzhen Gao, Permutations with Restricted Structure (in preparation).

%H Alois P. Heinz, <a href="/A000276/b000276.txt">Table of n, a(n) for n = 4..150</a>

%F a(n) = (n-1)!*Sum_{i=2..n-2} 1/i = (n-1)!*(Psi(n-1)+gamma-1). - _Vladeta Jovovic_, Aug 19 2003

%F With alternating signs: Ramanujan polynomials psi_3(n-2, x) evaluated at 1. - _Ralf Stephan_, Apr 16 2004

%F E.g.f.: ((x+log(1-x))^2)/2. [Corrected by _Vladeta Jovovic_, May 03 2008]

%F a(n) = Sum_{i=2..floor((n-1)/2)} n!/((n-i)*i) + Sum_{i=ceiling(n/2)..floor(n/2)} n!/(2*(n-i)*i). - _Shanzhen Gao_, Sep 15 2010

%F a(n) = (n+3)!*(h(n+2)-1), with offset 0, where h(n)=sum(1/k,k=1..n). - _Gary Detlefs_, Sep 11 2010

%F Conjecture: (-n+2)*a(n) +(n-1)*(2*n-5)*a(n-1) -(n-1)*(n-2)*(n-3)*a(n-2)=0. - _R. J. Mathar_, Jul 18 2015

%F Conjecture: a(n) +2*(-n+2)*a(n-1) +(n^2-6*n+10)*a(n-2) +(n-3)*(n-4)*a(n-3)=0. - _R. J. Mathar_, Jul 18 2015

%F a(n) = A000254(n-1) - (n-1)! - (n-2)!. - _Anton Zakharov_, Sep 24 2016

%e a(4) = 3 because we have: (12)(34),(13)(24),(14)(23). - _Geoffrey Critzer_, Nov 03 2012

%t nn=25;a=Log[1/(1-x)]-x;Drop[Range[0,nn]!CoefficientList[Series[a^2/2,{x,0,nn}],x],4] (* _Geoffrey Critzer_, Nov 03 2012 *)

%t a[n_] := (n-1)!*(HarmonicNumber[n-2]-1); Table[a[n], {n, 4, 23}] (* _Jean-François Alcover_, Feb 06 2016, after _Gary Detlefs_ *)

%o (PARI) a(n) = (n-1)!*sum(i=2, n-2, 1/i); \\ _Michel Marcus_, Feb 06 2016

%Y A diagonal of triangle in A008306.

%Y Cf. A052518, A052881, A259456.

%K nonn

%O 4,1

%A _N. J. A. Sloane_

%E More terms from _Christian G. Bower_