login
A000279
Card matching: coefficients B[n,1] of t in the reduced hit polynomial A[n,n,n](t).
(Formerly M3106 N1258)
4
3, 24, 216, 1824, 15150, 124416, 1014888, 8241792, 66724398, 538990800, 4346692680, 35009591040, 281699380560, 2264868936960, 18198009147600, 146142982814208, 1173123636533454, 9413509300965936, 75513633110271264, 605598295606296000, 4855626127979443908, 38924245740546950784
OFFSET
1,1
COMMENTS
Number of permutations of 3 distinct letters (ABC) each with n copies such that one (1) fixed points. E.g., if AAAAABBBBBCCCCC n=3*5 letters permutations then one fixed points n5=15150. - Zerinvary Lajos, Feb 02 2006
The definition uses notations of Riordan (1958), except for use of n instead of p. - M. F. Hasler, Sep 22 2015
REFERENCES
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 193.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
a(n) = 3n * sum(C(n, k+1)*C(n, k)*C(n-1, k), k=0..n-1).
G.f.: x * (6*hypergeom([4/3, 5/3],[2],27*x^2/(1-2*x)^3)/(1-2*x)^3 - 3*hypergeom([2/3, 4/3],[1],27*x^2/(1-2*x)^3)/(1-2*x)^2). - Mark van Hoeij, Oct 23 2011
a(n) = n^2*(A000172(n)+4*A000172(n-1))/(n+1). - Mark van Hoeij, Oct 26 2011
a(n) ~ 8^n*sqrt(3)/Pi = 8^n*0.5513... - M. F. Hasler, Sep 21 2015
a(n) = 3n*A262407(n). - M. F. Hasler, Sep 23 2015
MATHEMATICA
f[n_] := HypergeometricPFQ[{-n, -n, -n}, {1, 1}, -1]; a[n_] := n^2*(f[n]+4*f[n-1])/(n+1); Array[a, 20] (* Jean-François Alcover, Mar 11 2014, after Mark van Hoeij *)
PROG
(PARI) A000279(n)=3*n*sum(k=0, n-1, binomial(n, k+1)*binomial(n, k)*binomial(n-1, k)) \\ M. F. Hasler, Sep 21 2015
CROSSREFS
Cf. A033581.
Sequence in context: A073978 A278991 A232692 * A370443 A292311 A370986
KEYWORD
nonn
EXTENSIONS
More terms from Vladeta Jovovic, Apr 26 2000
More terms from Emeric Deutsch, Feb 19 2004
Three lines of data completed and more explicit definition by M. F. Hasler, Sep 21 2015
STATUS
approved