The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A232692 E.g.f. satisfies: A(x) = exp( 1/A(x)^3 * Integral A(x)^8 dx ). 3
 1, 1, 3, 24, 213, 3096, 46071, 967608, 20251809, 555747048, 15004870731, 508165972056, 16810393586733, 677183788645704, 26523956467895103, 1238567261126084856, 56056407696184372281, 2976966230117448265128, 152872356339113679491859, 9098430770913969095416728 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Compare e.g.f. to: B(x) = exp( 1/B(x)^3 * Integral B(x)^3 dx ) where B(y) = Bessel polynomial y_n(-3) (cf. A065923). Note that G(x) = exp(1/G(x)^3 * Integral G(x)^7 dx) has negative coefficients. CONJECTURE: Given G(x,n,k) = G such that G = exp( 1/G^n * Integral G^k dx ) then G(x,n,k) consists solely of positive coefficients when k >= A047399(n) where A047399 lists numbers that are congruent to {0,3,6} mod 8. LINKS Paul D. Hanna, Table of n, a(n) for n = 0..300 FORMULA E.g.f.: (3*LambertW(-1, (25*x-8)/3*exp(-8/3))/(25*x-8))^(1/5). - Vaclav Kotesovec, Jan 05 2014 EXAMPLE E.g.f.: A(x) = 1 + x + 3*x^2/2! + 24*x^3/3! + 213*x^4/4! + 3096*x^5/5! +... Related expansions: log(A(x)) = x + 2*x^2/2! + 17*x^3/3! + 120*x^4/4! + 1905*x^5/5! + 23640*x^6/6! +... Integral A(x)^8 dx = x + 8*x^2/2! + 80*x^3/3! + 1032*x^4/4! + 16320*x^5/5! +... 1/A(x)^3 = 1 - 3*x + 3*x^2/2! - 24*x^3/3! + 117*x^4/4! - 2088*x^5/5! +... MAPLE seq(n! * coeff(series((3*LambertW(-1, (25*x-8)/3*exp(-8/3))/(25*x-8))^(1/5), x, n+1), x, n), n=0..20) # Vaclav Kotesovec, Jan 05 2014 MATHEMATICA m = 20; A[_] = 1; Do[A[x_] = Exp[1/A[x]^3 Integrate[A[x]^8 + O[x]^m, x]] + O[x]^m // Normal, {m}]; CoefficientList[A[x], x] Range[0, m-1]! (* Jean-François Alcover, Nov 03 2019 *) PROG (PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(1/A^3*intformal(A^8+x*O(x^n)))); n!*polcoeff(A, n)} for(n=0, 30, print1(a(n), ", ")) CROSSREFS Cf. A232690, A232691. Sequence in context: A361880 A073978 A278991 * A000279 A370443 A292311 Adjacent sequences: A232689 A232690 A232691 * A232693 A232694 A232695 KEYWORD nonn AUTHOR Paul D. Hanna, Dec 06 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 23 14:31 EDT 2024. Contains 373651 sequences. (Running on oeis4.)