login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A232689
G.f. A(x) satisfies: the sum of the coefficients of x^k, k=0..n, in A(x)^n equals 2^(n^2) for n>=0.
1
1, 1, 6, 150, 15684, 6626832, 11412679110, 80341130055678, 2305199459532741522, 268629428492391824756106, 126762373497858122449971372498, 241676422998164497873224935953948770, 1858392533076949187099229893507827126982592, 57560655711123829878000426546315591572901023820252
OFFSET
0,3
LINKS
FORMULA
Given g.f. A(x), Sum_{k=0..n} [x^k] A(x)^n = 2^(n^2).
EXAMPLE
G.f.: A(x) = 1 + x + 6*x^2 + 150*x^3 + 15684*x^4 + 6626832*x^5 +...
ILLUSTRATION OF INITIAL TERMS.
If we form an array of coefficients of x^k in A(x)^n, n>=0, like so:
A^0: [1],0, 0, 0, 0, 0, 0, 0, ...;
A^1: [1, 1], 6, 150, 15684, 6626832, 11412679110, 80341130055678, ...;
A^2: [1, 2, 13], 312, 31704, 13286832, 22838822592, 160705169696760, ...;
A^3: [1, 3, 21, 487], 48078, 19980558, 34278483114, 241092139452066, ...;
A^4: [1, 4, 30, 676, 64825], 26708592, 45731714160, 321502059924816, ...;
A^5: [1, 5, 40, 880, 81965, 33471541], 57198570060, 401934951793740, ...;
A^6: [1, 6, 51, 1100, 99519, 40270038, 68679106021], 482390835814224, ...;
A^7: [1, 7, 63, 1337, 117509, 47104743, 80173378159, 562869732819493], ...; ...
then the sum of the coefficients of x^k, k=0..n, in A(x)^n (shown above in brackets) equals 2^(n^2):
2^0 = 1 = 1;
2^1 = 1 + 1 = 2;
2^4 = 1 + 2 + 13 = 16;
2^9 = 1 + 3 + 21 + 487 = 512;
2^16 = 1 + 4 + 30 + 676 + 64825 = 65536;
2^25 = 1 + 5 + 40 + 880 + 81965 + 33471541 = 33554432;
2^36 = 1 + 6 + 51 + 1100 + 99519 + 40270038 + 68679106021 = 68719476736; ...
PROG
(PARI) /* By Definition (slow): */
{a(n)=if(n==0, 1, (2^(n^2) - sum(k=0, n, polcoeff(sum(j=0, min(k, n-1), a(j)*x^j)^n + x*O(x^k), k)))/n)}
for(n=0, 20, print1(a(n)*1!, ", "))
(PARI) /* Faster, using series reversion: */
{a(n)=local(B=sum(k=0, n+1, 2^(k^2)*x^k)+x^3*O(x^n), G=1+x*O(x^n));
for(i=1, n, G = 1 + intformal( (B-1)*G/x - B*G^2)); polcoeff(x/serreverse(x*G), n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 06 2013
STATUS
approved