login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A232688
Expansion of 1/(1-x)^(1+2*x).
0
1, 1, 6, 24, 160, 1100, 9168, 84336, 868544, 9806688, 120754080, 1608251040, 23036978688, 353070167424, 5764504370688, 99875064159360, 1830107743518720, 35360088597841920, 718450398365755392, 15313427783968370688, 341652563064038062080, 7962756873168407869440
OFFSET
0,3
COMMENTS
Generally, if E.g.f. = 1/(1-x)^(1+p*x) then a(n) ~ n! * n^p/p! * (1 - p^2*log(n)/n). - Vaclav Kotesovec, Nov 29 2013
FORMULA
E.g.f.: Sum_{n>=0} x^n/n! * Product_{k=1..n} (k + 2*x).
a(n) ~ n! * n^2/2 * (1-4*log(n)/n). - Vaclav Kotesovec, Nov 29 2013
EXAMPLE
E.g.f.: A(x) = 1 + x + 6*x^2/2! + 24*x^3/3! + 160*x^4/4! + 1100*x^5/5! + 9168*x^6/6! +...
where
A(x) = 1 + (1+2*x)*x + (1+2*x)*(2+2*x)*x^2/2! + (1+2*x)*(2+2*x)*(3+2*x)*x^3/3! + (1+2*x)*(2+2*x)*(3+2*x)*(4+2*x)*x^4/4! + (1+2*x)*(2+2*x)*(3+2*x)*(4+2*x)*(5+2*x)*x^5/5! +...
MATHEMATICA
CoefficientList[Series[1/(1-x)^(1+2*x), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Nov 29 2013 *)
PROG
(PARI) {a(n)=n!*polcoeff(sum(m=0, n, prod(k=1, m, k+2*x)*x^m/m!)+x*O(x^n), n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n)=n!*polcoeff((1-x+x*O(x^n))^(-1-2*x), n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A073479.
Sequence in context: A165491 A165638 A122829 * A221980 A359693 A225827
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 27 2013
STATUS
approved