login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A165491
a(0)=1, a(1)=6, a(n) = 30*a(n-2) - a(n-1).
2
1, 6, 24, 156, 564, 4116, 12804, 110676, 273444, 3046836, 5156484, 86248596, 68445924, 2519011956, -465634236, 76035992916, -90005019996, 2371084807476, -5071235407356, 76203779631636, -228340841852316, 2514454230801396
OFFSET
0,2
COMMENTS
a(n)/a(n-1) tends to -6.
FORMULA
G.f.: (1+7*x)/(1+x-30*x^2).
a(n) = Sum_{k=0..n} A112555(n,k)*5^k.
a(n) = (12*5^n-(-6)^n)/11. - Klaus Brockhaus, Sep 26 2009
E.g.f.: (12*exp(5*x) - exp(-6*x))/11. - G. C. Greubel, Oct 20 2018
MAPLE
seq(coeff(series((1+7*x)/(1+x-30*x^2), x, n+1), x, n), n = 0 .. 22); # Muniru A Asiru, Oct 21 2018
MATHEMATICA
LinearRecurrence[{-1, 30}, {1, 6}, 30] (* Harvey P. Dale, May 04 2012 *)
PROG
(PARI) vector(30, n, n--; (12*5^n-(-6)^n)/11) \\ G. C. Greubel, Oct 20 2018
(Magma) [(12*5^n-(-6)^n)/11: n in [0..30]]; // G. C. Greubel, Oct 20 2018
(GAP) a:=[1, 6];; for n in [3..22] do a[n]:=30*a[n-2]-a[n-1]; od; a; # Muniru A Asiru, Oct 21 2018
CROSSREFS
Sequence in context: A250743 A265883 A330498 * A165638 A122829 A232688
KEYWORD
easy,sign
AUTHOR
Philippe Deléham, Sep 21 2009
STATUS
approved