login
A330498
Expansion of e.g.f. Sum_{k>=1} log(1 + log(1/(1 - x))^k) / k.
2
0, 1, 1, 6, 24, 152, 1230, 12646, 141274, 1730984, 23920800, 379364664, 6766026168, 131337466608, 2713274041296, 59397879195456, 1386647548658496, 34745321580075648, 934708252265232768, 26835517455387452928, 815158892950448937984
OFFSET
0,4
LINKS
FORMULA
a(n) ~ n! * c / (n * (1 - exp(-1))^n), where c = 0.6931..., conjecture: c = log(2).
MATHEMATICA
nmax = 20; CoefficientList[Series[Sum[Log[1+Log[1/(1-x)]^k]/k, {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Dec 16 2019
STATUS
approved