login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A330493
a(n) = Sum_{k=1..n} (-1)^(n-k) * Stirling1(n,k) * (k-1)! * tau(k), where tau = A000005.
5
1, 3, 12, 70, 492, 4298, 43894, 514666, 6830888, 101473632, 1664125944, 29858266392, 582481147440, 12281821373040, 278257595964576, 6739505703156192, 173785740554811264, 4754455742416944000, 137571331202872821504, 4197696814883284962048
OFFSET
1,2
LINKS
FORMULA
E.g.f.: -Sum_{k>=1} log(1 - log(1/(1 - x))^k) / k.
a(n) ~ n! * (log(n) + 2*gamma - log(exp(1) - 1)) / (n * (1 - exp(-1))^n), where gamma is the Euler-Mascheroni constant A001620.
MATHEMATICA
Table[Sum[(-1)^(n-k) * StirlingS1[n, k] * (k-1)! * DivisorSigma[0, k], {k, 1, n}], {n, 1, 20}]
nmax = 20; Rest[CoefficientList[Series[-Sum[Log[1 - Log[1/(1 - x)]^k]/k, {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!]
PROG
(PARI) a(n) = sum(k=1, n, (-1)^(n-k)*stirling(n, k, 1)*(k-1)!*numdiv(k)); \\ Michel Marcus, Dec 16 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Dec 16 2019
STATUS
approved