login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047399
Numbers that are congruent to {0, 3, 6} mod 8.
6
0, 3, 6, 8, 11, 14, 16, 19, 22, 24, 27, 30, 32, 35, 38, 40, 43, 46, 48, 51, 54, 56, 59, 62, 64, 67, 70, 72, 75, 78, 80, 83, 86, 88, 91, 94, 96, 99, 102, 104, 107, 110, 112, 115, 118, 120, 123, 126, 128, 131, 134, 136, 139, 142, 144, 147, 150, 152, 155, 158
OFFSET
1,2
FORMULA
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = floor((8*n-6)/3). [Gary Detlefs, Mar 07 2010]
a(n) = 3*n-floor(n/3). [Gary Detlefs, Jul 09 2011]
G.f. x^2*(3+3*x+2*x^2) / ((1+x+x^2)*(x-1)^2). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, Jun 13 2016: (Start)
a(n) = (24*n-21+3*cos(2*n*Pi/3)-sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 8k-2, a(3k-1) = 8k-5, a(3k-2) = 8k-8. (End)
MAPLE
seq(floor((8*n-6)/3), n=1..52); # Gary Detlefs, Mar 07 2010
MATHEMATICA
f[n_] := 3 n - Floor[n/3]; Array[f, 52, 0] (* Or *)
Cases[ Range[0, 136], n_ /; MatchQ[ Mod[n, 8], 0 | 3 | 6]] (* Robert G. Wilson v, Jul 10 2011 *)
PROG
(Magma) [Floor((8*n-6)/3): n in [1..60]]; // Vincenzo Librandi, Jul 11 2011
CROSSREFS
Sequence in context: A004957 A026352 A198084 * A342744 A057349 A087068
KEYWORD
nonn,easy
STATUS
approved