The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A047398 Numbers that are congruent to {3, 6} mod 8. 16
 3, 6, 11, 14, 19, 22, 27, 30, 35, 38, 43, 46, 51, 54, 59, 62, 67, 70, 75, 78, 83, 86, 91, 94, 99, 102, 107, 110, 115, 118, 123, 126, 131, 134, 139, 142, 147, 150, 155, 158, 163, 166, 171, 174, 179, 182, 187, 190, 195, 198, 203, 206, 211, 214, 219, 222, 227, 230 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Index entries for linear recurrences with constant coefficients, signature (1,1,-1). FORMULA a(n) = 8*n - a(n-1) - 7, n > 1. - Vincenzo Librandi, Aug 05 2010 From R. J. Mathar, Dec 05 2011: (Start) a(n) = 4*n - (3 + (-1)^n)/2. G.f.: x*(3+3*x+2*x^2) / ( (1+x)*(x-1)^2 ). (End) From Franck Maminirina Ramaharo, Aug 06 2018: (Start) a(n) = a(n-1) + a(n-2) - a(n-3), n > 3. a(n) = 4*n + (n mod 2) - 2. a(n) = A047470(n) + 3. a(2*n) = A017137(n-1). a(2*n-1) = A017101(n-1). E.g.f.: ((8*x - 3)*exp(x) - exp(-x) + 4)/2. (End) MAPLE A047398:=n->4*n-(3+(-1)^n)/2: seq(A047398(n), n=1..100); # Wesley Ivan Hurt, Jan 30 2017 MATHEMATICA Flatten[# + {3, 6} & /@ (8 Range[0, 28])] (* Arkadiusz Wesolowski, Sep 25 2012 *) LinearRecurrence[{1, 1, -1}, {3, 6, 11}, 60] (* Harvey P. Dale, Oct 26 2020 *) PROG (Maxima) makelist(4*n + mod(n, 2) - 2, n, 1, 100); /* Franck Maminirina Ramaharo, Aug 06 2018 */ CROSSREFS Cf. A047461, A047452, A047470, A047524, A047535, A047615, A047617. Sequence in context: A026368 A246976 A189380 * A047924 A267519 A200182 Adjacent sequences:  A047395 A047396 A047397 * A047399 A047400 A047401 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 26 09:15 EDT 2021. Contains 347664 sequences. (Running on oeis4.)