login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A189380
a(n) = n + floor(n*s/r) + floor(n*t/r); r=1, s=-1+sqrt(2), t=1+sqrt(2).
3
3, 6, 11, 14, 19, 22, 25, 30, 33, 38, 41, 44, 49, 52, 57, 60, 65, 68, 71, 76, 79, 84, 87, 90, 95, 98, 103, 106, 111, 114, 117, 122, 125, 130, 133, 136, 141, 144, 149, 152, 155, 160, 163, 168, 171, 176, 179, 182, 187, 190, 195, 198, 201, 206, 209, 214, 217, 222, 225, 228, 233, 236, 241, 244, 247, 252, 255, 260, 263, 266, 271, 274, 279, 282, 287, 290, 293, 298, 301, 306, 309, 312, 317
OFFSET
1,1
COMMENTS
This is one of three sequences that partition the positive integers. In general, suppose that r, s, t are positive real numbers for which the sets {i/r: i>=1}, {j/s: j>=1}, {k/t: k>=1} are pairwise disjoint. Let a(n) be the rank of n/r when all the numbers in the three sets are jointly ranked. Define b(n) and c(n) as the ranks of n/s and n/t. It is easy to prove that
f(n) = n + [n*s/r] + [n*t/r],
g(n) = n + [n*r/s] + [n*t/s],
h(n) = n + [n*r/t] + [n*s/t], where []=floor.
Taking r=1, s=-1+sqrt(2), t=1+sqrt(2) gives f=A189380, g=A189381, h=A189382.
LINKS
FORMULA
a(n) = 5*floor(n * (sqrt(2) - 1)) + 3*floor(n * (2 - sqrt(2))) + 3. - Miko Labalan, Dec 04 2016
MATHEMATICA
r=1; s=-1+2^(1/2); t=1+2^(1/2);
f[n_] := n + Floor[n*s/r] + Floor[n*t/r];
g[n_] := n + Floor[n*r/s] + Floor[n*t/s];
h[n_] := n + Floor[n*r/t] + Floor[n*s/t]
Table[f[n], {n, 1, 120}] (* A189380 *)
Table[g[n], {n, 1, 120}] (* A189381 *)
Table[h[n], {n, 1, 120}] (* A189382 *)
PROG
(PARI) for(n=1, 100, print1(n + floor(n*(sqrt(2) -1)) + floor(n*(sqrt(2)+1)), ", ")) \\ G. C. Greubel, Apr 20 2018
(Magma) [n + Floor(n*(Sqrt(2) -1)) + Floor(n*(Sqrt(2) + 1)): n in [1..100]]; // G. C. Greubel, Apr 20 2018
CROSSREFS
Sequence in context: A182669 A026368 A246976 * A047398 A047924 A267519
KEYWORD
nonn
AUTHOR
Clark Kimberling, Apr 20 2011
STATUS
approved