login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047400
Numbers that are congruent to {1, 3, 6} mod 8.
1
1, 3, 6, 9, 11, 14, 17, 19, 22, 25, 27, 30, 33, 35, 38, 41, 43, 46, 49, 51, 54, 57, 59, 62, 65, 67, 70, 73, 75, 78, 81, 83, 86, 89, 91, 94, 97, 99, 102, 105, 107, 110, 113, 115, 118, 121, 123, 126, 129, 131, 134, 137, 139, 142, 145, 147, 150, 153, 155, 158
OFFSET
1,2
COMMENTS
Union of A017077, A017101 and A017137. - R. J. Mathar, Apr 14 2008
FORMULA
a(n) = A004773(n-1) + A004773(n). - Gary W. Adamson, Sep 13 2007
G.f.: x*(1+x)*(2x^2+x+1)/((-1+x)^2*(x^2+x+1)). a(n) = a(n-3)+8 for n>3. - R. J. Mathar, Apr 14 2008
From Wesley Ivan Hurt, Jun 10 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = 2*(12*n-9+sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 8k-2, a(3k-1) = 8k-5, a(3k-2) = 8k-7. (End)
MAPLE
A047400:=n->2*(12*n-9+sqrt(3)*sin(2*n*Pi/3))/9: seq(A047400(n), n=1..100); # Wesley Ivan Hurt, Jun 10 2016
MATHEMATICA
Select[Range[0, 150], MemberQ[{1, 3, 6}, Mod[#, 8]] &] (* Wesley Ivan Hurt, Jun 10 2016 *)
PROG
(PARI) a(n) = {x=8*floor((n-1)/3); if(n%3==1, x=x+1); if(n%3==2, x=x+3); if(n%3==0, x=x+6); x} \\ Michael B. Porter, Oct 02 2009
(Magma) [n: n in [1..300] | n mod 8 in [1, 3, 6]]; // Vincenzo Librandi, Mar 27 2011
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved