login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047403
Numbers that are congruent to {0, 2, 3, 6} mod 8.
1
0, 2, 3, 6, 8, 10, 11, 14, 16, 18, 19, 22, 24, 26, 27, 30, 32, 34, 35, 38, 40, 42, 43, 46, 48, 50, 51, 54, 56, 58, 59, 62, 64, 66, 67, 70, 72, 74, 75, 78, 80, 82, 83, 86, 88, 90, 91, 94, 96, 98, 99, 102, 104, 106, 107, 110, 112, 114, 115, 118, 120, 122, 123, 126, 128
OFFSET
1,2
FORMULA
a(n) = 2*n - ((n mod 4) == 2).
G.f.: x^2*(2+x+3*x^2+2*x^3) / ( (1+x)*(x^2+1)*(x-1)^2 ). - R. J. Mathar, Dec 05 2011
From Wesley Ivan Hurt, May 24 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (8*n-9+i^(2*n)+i^(1-n)-i^(1+n))/4, where i=sqrt(-1).
a(2k) = A016825(k-1) for k>0, a(2k-1) = A047470. (End)
E.g.f.: (4 + sin(x) + (4*x - 5)*sinh(x) + 4*(x - 1)*cosh(x))/2. - Ilya Gutkovskiy, May 25 2016
Sum_{n>=2} (-1)^n/a(n) = (4-sqrt(2))*log(2)/16 + sqrt(2)*log(2+sqrt(2))/8 - (sqrt(2)-1)*Pi/16. - Amiram Eldar, Dec 21 2021
MAPLE
A047403:=n->(8*n-9+I^(2*n)+I^(1-n)-I^(1+n))/4: seq(A047403(n), n=1..100); # Wesley Ivan Hurt, May 24 2016
MATHEMATICA
Table[(8n-9+I^(2n)+I^(1-n)-I^(1+n))/4, {n, 80}] (* Wesley Ivan Hurt, May 24 2016 *)
#+{0, 2, 3, 6}&/@(8*Range[0, 20])//Flatten (* or *) LinearRecurrence[{1, 0, 0, 1, -1}, {0, 2, 3, 6, 8}, 80] (* Harvey P. Dale, Mar 02 2023 *)
PROG
(Magma) [n : n in [0..150] | n mod 8 in [0, 2, 3, 6]]; // Wesley Ivan Hurt, May 24 2016
CROSSREFS
Sequence in context: A351125 A334747 A285306 * A286051 A093193 A187750
KEYWORD
nonn,easy
STATUS
approved