login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047401
Numbers that are congruent to {0, 1, 3, 6} mod 8.
2
0, 1, 3, 6, 8, 9, 11, 14, 16, 17, 19, 22, 24, 25, 27, 30, 32, 33, 35, 38, 40, 41, 43, 46, 48, 49, 51, 54, 56, 57, 59, 62, 64, 65, 67, 70, 72, 73, 75, 78, 80, 81, 83, 86, 88, 89, 91, 94, 96, 97, 99, 102, 104, 105, 107, 110, 112, 113, 115, 118, 120, 121, 123
OFFSET
1,3
COMMENTS
Partial sums of A068073. - Jeremy Gardiner, Jul 20 2013.
FORMULA
G.f.: x^2*(1+x+2*x^2) / ( (x^2+1)*(x-1)^2 ). - R. J. Mathar, Dec 05 2011
a(n) = 2*(n-1)+(i^(n*(n-1))-1)/2, where i=sqrt(-1). - Bruno Berselli, Dec 05 2011
From Wesley Ivan Hurt, Jun 01 2016: (Start)
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - a(n-4) for n>4.
a(2k) = A047452(k), a(2k-1) = A047470(k). (End)
Sum_{n>=2} (-1)^n/a(n) = Pi/16 + (3-sqrt(2))*log(2)/8 + sqrt(2)*log(2+sqrt(2))/4. - Amiram Eldar, Dec 20 2021
MAPLE
A047401:=n->2*(n-1)+(I^(n*(n-1))-1)/2: seq(A047401(n), n=1..100); # Wesley Ivan Hurt, Jun 01 2016
MATHEMATICA
Select[Range[0, 107], MemberQ[{0, 1, 3, 6}, Mod[#, 8]]&] (* Bruno Berselli, Dec 05 2011 *)
PROG
(Maxima) makelist(2*(n-1)+(%i^(n*(n-1))-1)/2, n, 1, 55); /* Bruno Berselli, Dec 05 2011 */
(Magma) [n : n in [0..150] | n mod 8 in [0, 1, 3, 6]]; // Wesley Ivan Hurt, Jun 01 2016
(PARI) my(x='x+O('x^100)); concat(0, Vec(x^2*(1+x+2*x^2)/((x^2+1)*(x-1)^2))) \\ Altug Alkan, Jun 02 2016
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved