|
|
A000489
|
|
Card matching: Coefficients B[n,3] of t^3 in the reduced hit polynomial A[n,n,n](t).
(Formerly M5025 N2168)
|
|
5
|
|
|
1, 16, 435, 7136, 99350, 1234032, 14219212, 155251840, 1628202762, 16550991200, 164111079110, 1594594348800, 15235525651840, 143518352447680, 1335670583147400, 12301278983461376, 112264111607438906, 1016361486936571680, 9136254276320346046
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
The definition uses notations of Riordan (1958), except for use of n instead of p. - M. F. Hasler, Sep 22 2015
|
|
REFERENCES
|
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 193.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
T. D. Noe, Table of n, a(n) for n = 1..100
Index entries for sequences related to card matching
|
|
FORMULA
|
a(n) = 3*binomial(n, 3)*sum(binomial(n, k+3)*binomial(n, k)*binomial(n-3, k), k=0..n-3) + 6n*binomial(n, 2)*sum(binomial(n, k+1)*binomial(n-1, k+2)*binomial(n-2, k), k=0..n-3) + n^3*sum(binomial(n-1, k)^3, k=0..n-1).
Recurrence: (n+3)*(243*n^7 - 1701*n^6 + 4239*n^5 - 4671*n^4 + 6042*n^3 - 17352*n^2 + 25032*n - 12016)*(n-1)^2*a(n) = n*(1701*n^9 - 6804*n^8 + 270*n^7 + 19116*n^6 + 35085*n^5 - 203640*n^4 + 324384*n^3 - 246736*n^2 + 75440*n - 5440)*a(n-1) + 8*n*(243*n^7 - 864*n^5 - 486*n^4 + 4233*n^3 - 5274*n^2 + 2460*n - 184)*(n-1)^2*a(n-2). - Vaclav Kotesovec, Aug 07 2013
a(n) ~ 3*sqrt(3)*n^2*8^(n-1)/Pi. - Vaclav Kotesovec, Aug 07 2013
|
|
MATHEMATICA
|
a[n_] := 3*Binomial[n, 3]*Sum[Binomial[n, k + 3]*Binomial[n, k]*Binomial[n - 3, k], {k, 0, n - 3}] + 6 n*Binomial[n, 2]*Sum[Binomial[n, k + 1]*Binomial[n - 1, k + 2]*Binomial[n - 2, k], {k, 0, n - 3}] + n^3*Sum[Binomial[n - 1, k]^3, {k, 0, n - 1}]; Table[a[n], {n, 20}] (* T. D. Noe, Jun 20 2012 *)
|
|
PROG
|
(PARI) A000489(n)={3*binomial(n, 3)*sum(k=0, n-3, binomial(n, k+3)*binomial(n, k)*binomial(n-3, k))+6*n*binomial(n, 2)*sum(k=0, n-3, binomial(n, k+1)*binomial(n-1, k+2)*binomial(n-2, k))+n^3*sum(k=0, n-1, binomial(n-1, k)^3)} \\ M. F. Hasler, Sep 20 2015
(Magma) [1, 16] cat [&+[3*Binomial(n, 3)*Binomial(n, k+3)*Binomial(n, k)*Binomial(n-3, k) + 6*n*Binomial(n, 2)*Binomial(n, k+1)*Binomial(n-1, k+2)*Binomial(n-2, k): k in [0..n-3]] + &+[n^3*Binomial(n-1, k)^3: k in [0..n-1]]: n in [3..20]]; // Vincenzo Librandi, Sep 22 2015
|
|
CROSSREFS
|
Cf. A000279, A000535.
Cf. A059056 - A059071.
Sequence in context: A111921 A118994 A223686 * A075852 A260853 A068792
Adjacent sequences: A000486 A000487 A000488 * A000490 A000491 A000492
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
N. J. A. Sloane
|
|
EXTENSIONS
|
More terms from Vladeta Jovovic, Apr 26 2000
More terms from Emeric Deutsch, Feb 19 2004
Definition made more precise by M. F. Hasler, Sep 22 2015
|
|
STATUS
|
approved
|
|
|
|