The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A000492 Number of permutations of an n-sequence discordant with three given permutations (see reference) in n-6 places. (Formerly M5092 N2204) 6
 20, 154, 1676, 14292, 155690, 1731708, 21264624, 280260864, 3970116255, 60113625680, 969368687752, 16588175089420, 300272980075896, 5733025551810600, 115148956467702600, 2427199940533198992, 53576182138937428377, 1235917889588345408586 (list; graph; refs; listen; history; text; internal format)
 OFFSET 6,1 REFERENCES J. Riordan, Discordant permutations, Scripta Math., 20 (1954), 14-23. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS J. Riordan, Discordant permutations, Scripta Math., 20 (1954), 14-23. [Annotated scanned copy] FORMULA a(n) = coefficient of y^6 in sum_0^n sigma_{n, k}(n - k)!(y - 1)^k on y where the sigma_{n, k} have generating function sigma(t, u) = (1 - 2t^2(u^2) - 2t^2(1 + t)u^3 + 3t^4(u^4))(1 - tu)^(-1)(1 - (1 + 2t)u - tu^2 + t^3(u^3))^(-1). - Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Feb 17 2001 MAPLE seq(f(n, 6), n=6..30); # code for f(n, k) is given in A000440 - Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Feb 17 2001 MATHEMATICA sigma[t_, u_] = (1-2t^2 (u^2) - 2t^2 (1+t) u^3 + 3t^4 (u^4)) (1-t*u)^(-1) (1-(1+2t)u - t*u^2 + t^3 (u^3))^(-1); ds[t_, n_] := D[sigma[t, u], {u, n}] /. u -> 0; f[n_, k_] := Coefficient[Sum[ Coefficient[ ds[t, n]/n!, t, j]*(n-j)!*(y-1)^j, {j, 0, n}], y, k]; a[n_] := f[n, 6]; Table[a[n], {n, 6, 25}] (* Jean-François Alcover, Feb 09 2016 *) CROSSREFS Cf. A000500, A000470, A000440, A000476, A000380, A000388. Sequence in context: A022680 A108647 A164605 * A015866 A101091 A120693 Adjacent sequences: A000489 A000490 A000491 * A000493 A000494 A000495 KEYWORD nonn AUTHOR EXTENSIONS More terms from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Feb 17 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 28 05:31 EDT 2023. Contains 361577 sequences. (Running on oeis4.)