The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A164605 a(n) = ((1+4*sqrt(2))*(4+2*sqrt(2))^n + (1-4*sqrt(2))*(4-2*sqrt(2))^n)/2. 3
 1, 20, 152, 1056, 7232, 49408, 337408, 2304000, 15732736, 107429888, 733577216, 5009178624, 34204811264, 233565061120, 1594881998848, 10890535501824, 74365228023808, 507797540175872, 3467458497216512, 23677287656325120 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Binomial transform of A164604. Fourth binomial transform of A164702. Inverse binomial transform of A164606. LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..149 from Vincenzo Librandi) Index entries for linear recurrences with constant coefficients, signature (8,-8). FORMULA a(n) = 8*a(n-1) - 8*a(n-2) for n > 1; a(0) = 1, a(1) = 20. G.f.: (1+12*x)/(1-8*x+8*x^2). E.g.f.: exp(4*x)*(cosh(2*sqrt(2)*x) + 4*sqrt(2)*sinh(2*sqrt(2)*x)). - G. C. Greubel, Aug 10 2017 MATHEMATICA LinearRecurrence[{8, -8}, {1, 20}, 30] (* Harvey P. Dale, Mar 24 2015 *) PROG (MAGMA) Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((1+4*r)*(4+2*r)^n+(1-4*r)*(4-2*r)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 23 2009 (PARI) Vec((1+12*x)/(1-8*x+8*x^2)+O(x^99)) \\ Charles R Greathouse IV, Jun 12 2011 CROSSREFS Cf. A164604, A164702, A164606. Sequence in context: A189494 A022680 A108647 * A000492 A015866 A101091 Adjacent sequences:  A164602 A164603 A164604 * A164606 A164607 A164608 KEYWORD nonn,easy AUTHOR Al Hakanson (hawkuu(AT)gmail.com), Aug 17 2009 EXTENSIONS Edited and extended beyond a(5) by Klaus Brockhaus, Aug 23 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 14 05:51 EDT 2021. Contains 345018 sequences. (Running on oeis4.)