login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A164605
a(n) = ((1+4*sqrt(2))*(4+2*sqrt(2))^n + (1-4*sqrt(2))*(4-2*sqrt(2))^n)/2.
3
1, 20, 152, 1056, 7232, 49408, 337408, 2304000, 15732736, 107429888, 733577216, 5009178624, 34204811264, 233565061120, 1594881998848, 10890535501824, 74365228023808, 507797540175872, 3467458497216512, 23677287656325120
OFFSET
0,2
COMMENTS
Binomial transform of A164604. Fourth binomial transform of A164702. Inverse binomial transform of A164606.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..149 from Vincenzo Librandi)
FORMULA
a(n) = 8*a(n-1) - 8*a(n-2) for n > 1; a(0) = 1, a(1) = 20.
G.f.: (1+12*x)/(1-8*x+8*x^2).
E.g.f.: exp(4*x)*(cosh(2*sqrt(2)*x) + 4*sqrt(2)*sinh(2*sqrt(2)*x)). - G. C. Greubel, Aug 10 2017
MATHEMATICA
LinearRecurrence[{8, -8}, {1, 20}, 30] (* Harvey P. Dale, Mar 24 2015 *)
PROG
(Magma) Z<x>:=PolynomialRing(Integers()); N<r>:=NumberField(x^2-2); S:=[ ((1+4*r)*(4+2*r)^n+(1-4*r)*(4-2*r)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 23 2009
(PARI) Vec((1+12*x)/(1-8*x+8*x^2)+O(x^99)) \\ Charles R Greathouse IV, Jun 12 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Al Hakanson (hawkuu(AT)gmail.com), Aug 17 2009
EXTENSIONS
Edited and extended beyond a(5) by Klaus Brockhaus, Aug 23 2009
STATUS
approved