login
A164602
a(n) = ((1+4*sqrt(2))*(1+2*sqrt(2))^n + (1-4*sqrt(2))*(1-2*sqrt(2))^n)/2.
3
1, 17, 41, 201, 689, 2785, 10393, 40281, 153313, 588593, 2250377, 8620905, 32994449, 126335233, 483631609, 1851609849, 7088640961, 27138550865, 103897588457, 397765032969, 1522813185137, 5829981601057, 22319655498073
OFFSET
0,2
COMMENTS
Binomial transform of A164703. Inverse binomial transform of A164603.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..177 from Vincenzo Librandi)
FORMULA
a(n) = 2*a(n-1) + 7*a(n-2) for n > 1; a(0) = 1, a(1) = 17.
G.f.: (1+15*x)/(1-2*x-7*x^2).
E.g.f.: exp(x)*(cosh(2*sqrt(2)*x) + 4*sqrt(2)*sinh(2*sqrt(2)*x)). - G. C. Greubel, Aug 11 2017
MATHEMATICA
Simplify/@Table[1/2((1-4Sqrt[2])(1-2Sqrt[2])^n+(1+2Sqrt[2])^n(1+4 Sqrt[2])), {n, 0, 25}] (* Harvey P. Dale, Jul 26 2011 *)
PROG
(Magma) Z<x>:=PolynomialRing(Integers()); N<r>:=NumberField(x^2-2); S:=[ ((1+4*r)*(1+2*r)^n+(1-4*r)*(1-2*r)^n)/2: n in [0..22] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 23 2009
(PARI) x='x+O('x^50); Vec((1+15*x)/(1-2*x-7*x^2)) \\ G. C. Greubel, Aug 11 2017
CROSSREFS
Sequence in context: A201705 A165668 A269425 * A078847 A201028 A328022
KEYWORD
nonn
AUTHOR
Al Hakanson (hawkuu(AT)gmail.com), Aug 17 2009
EXTENSIONS
Edited and extended beyond a(5) by Klaus Brockhaus, Aug 23 2009
STATUS
approved