login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A164606
a(n) = 10*a(n-1) - 17*a(n-2) for n > 1; a(0) = 1, a(1) = 21.
2
1, 21, 193, 1573, 12449, 97749, 765857, 5996837, 46948801, 367541781, 2877288193, 22524671653, 176332817249, 1380408754389, 10806429650657, 84597347681957, 662264172758401, 5184486816990741, 40586377233014593, 317727496441303333
OFFSET
0,2
COMMENTS
Binomial transform of A164605. Fifth binomial transform of A164702.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..144 from Vincenzo Librandi)
FORMULA
a(n) = 10*a(n-1) - 17*a(n-2) for n > 1; a(0) = 1, a(1) = 21.
a(n) = ((1+4*sqrt(2))*(5+2*sqrt(2))^n + (1-4*sqrt(2))*(5-2*sqrt(2))^n)/2.
G.f.: (1+11*x)/(1-10*x+17*x^2).
E.g.f.: exp(5*x)*(cosh(2*sqrt(2)*x) + 4*sqrt(2)*sinh(2*sqrt(2)*x)). - G. C. Greubel, Aug 10 2017
MATHEMATICA
LinearRecurrence[{10, -17}, {1, 21}, 30] (* Harvey P. Dale, May 22 2013 *)
PROG
(Magma) Z<x>:=PolynomialRing(Integers()); N<r>:=NumberField(x^2-2); S:=[ ((1+4*r)*(5+2*r)^n+(1-4*r)*(5-2*r)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 23 2009
(PARI) x='x+O('x^50); Vec((1+11*x)/(1-10*x+17*x^2)) \\ G. C. Greubel, Aug 10 2017
CROSSREFS
Sequence in context: A010827 A022713 A163718 * A027780 A108679 A200825
KEYWORD
nonn,easy
AUTHOR
Al Hakanson (hawkuu(AT)gmail.com), Aug 17 2009
EXTENSIONS
Edited and extended beyond a(5) by Klaus Brockhaus, Aug 23 2009
STATUS
approved