login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A164609
a(n) = 10*a(n-1) - 17*a(n-2) for n > 1; a(0) = 1, a(1) = 13.
3
1, 13, 113, 909, 7169, 56237, 440497, 3448941, 27000961, 211377613, 1654759793, 12954178509, 101410868609, 793887651437, 6214891748017, 48652827405741, 380875114341121, 2981653077513613, 23341653831337073, 182728435995639309
OFFSET
0,2
COMMENTS
Binomial transform of A164608. Fifth binomial transform of A164683.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..144 from Vincenzo Librandi)
FORMULA
a(n) = 10*a(n-1) - 17*a(n-2) for n > 1; a(0) = 1, a(1) = 13.
a(n) = ((2+4*sqrt(2))*(5+2*sqrt(2))^n + (2-4*sqrt(2))*(5-2*sqrt(2))^n)/4.
G.f.: (1+3*x)/(1-10*x+17*x^2).
E.g.f.: exp(5*x)*(cosh(2*sqrt(2)*x) + 2*sqrt(2)*sinh(2*sqrt(2)*x)). - G. C. Greubel, Aug 10 2017
MATHEMATICA
LinearRecurrence[{10, -17}, {1, 13}, 20] (* Harvey P. Dale, Nov 05 2014 *)
PROG
(Magma) Z<x>:=PolynomialRing(Integers()); N<r>:=NumberField(x^2-2); S:=[ ((2+4*r)*(5+2*r)^n+(2-4*r)*(5-2*r)^n)/4: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 22 2009
(PARI) x='x+O('x^50); Vec((1+3*x)/(1-10*x+17*x^2)) \\ G. C. Greubel, Aug 10 2017
CROSSREFS
Sequence in context: A021076 A125376 A048545 * A055430 A095680 A126534
KEYWORD
nonn,easy
AUTHOR
Al Hakanson (hawkuu(AT)gmail.com), Aug 17 2009
EXTENSIONS
Edited and extended beyond a(5) by Klaus Brockhaus, Aug 22 2009
STATUS
approved