login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A055430
Number of points in Z^n of norm <= 6.
2
1, 13, 113, 925, 6577, 42205, 252673, 1405325, 7259297, 35372141, 164379601, 733618493, 3146718929, 12990499005, 51718535393, 198914813101, 740760081985, 2678069599181, 9420136888369, 32289213758941
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (37, -666, 7770, -66045, 435897, -2324784, 10295472, -38608020, 124403620, -348330136, 854992152, -1852482996, 3562467300, -6107086800, 9364199760, -12875774670, 15905368710, -17672631900, 17672631900, -15905368710, 12875774670, -9364199760, 6107086800, -3562467300, 1852482996, -854992152, 348330136, -124403620, 38608020, -10295472, 2324784, -435897, 66045, -7770, 666, -37, 1).
FORMULA
From Chai Wah Wu, Jun 24 2024: (Start)
a(n) = 37*a(n-1) - 666*a(n-2) + 7770*a(n-3) - 66045*a(n-4) + 435897*a(n-5) - 2324784*a(n-6) + 10295472*a(n-7) - 38608020*a(n-8) + 124403620*a(n-9) - 348330136*a(n-10) + 854992152*a(n-11) - 1852482996*a(n-12) + 3562467300*a(n-13) - 6107086800*a(n-14) + 9364199760*a(n-15) - 12875774670*a(n-16) + 15905368710*a(n-17) - 17672631900*a(n-18) + 17672631900*a(n-19) - 15905368710*a(n-20) + 12875774670*a(n-21) - 9364199760*a(n-22) + 6107086800*a(n-23) - 3562467300*a(n-24) + 1852482996*a(n-25) - 854992152*a(n-26) + 348330136*a(n-27) - 124403620*a(n-28) + 38608020*a(n-29) - 10295472*a(n-30) + 2324784*a(n-31) - 435897*a(n-32) + 66045*a(n-33) - 7770*a(n-34) + 666*a(n-35) - 37*a(n-36) + a(n-37) for n > 36.
G.f.: (-281965*x^36 - 162444640*x^35 - 11761370826*x^34 - 212144886152*x^33 - 928459493209*x^32 + 1366727925344*x^31 + 5450543439600*x^30 - 13901610703968*x^29 + 5010411747228*x^28 + 24002105533408*x^27 - 48129204006968*x^26 + 44288625555072*x^25 - 17538634969732*x^24 - 9564481773600*x^23 + 21935655852496*x^22 - 20357294743904*x^21 + 13092000949610*x^20 - 6522919407712*x^19 + 2638636104868*x^18 - 890508942928*x^17 + 255606629458*x^16 - 63337866464*x^15 + 13802270992*x^14 - 2818810912*x^13 + 658326476*x^12 - 212266848*x^11 + 77735560*x^10 - 24527552*x^9 + 5749644*x^8 - 823648*x^7 - 5328*x^6 + 40416*x^5 - 12645*x^4 + 2368*x^3 - 298*x^2 + 24*x - 1)/(x - 1)^37. (End)
MATHEMATICA
a[n_] := SeriesCoefficient[1/(1-x) Sum[x^(i^2), {i, -6, 6}]^n, {x, 0, 36}];
a /@ Range[0, 19] (* Jean-François Alcover, Sep 29 2019, from A302997 *)
CROSSREFS
Row n=6 of A302997.
Sequence in context: A125376 A048545 A164609 * A095680 A126534 A361915
KEYWORD
nonn,easy
STATUS
approved