OFFSET
0,5
COMMENTS
A(n,k) is the number of integer lattice points inside the k-dimensional hypersphere of radius n.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1274
Eric Weisstein's World of Mathematics, Jacobi Theta Functions
FORMULA
A(n,k) = [x^(n^2)] (1/(1 - x))*(Sum_{j=-infinity..infinity} x^(j^2))^k.
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 3, 5, 7, 9, 11, ...
1, 5, 13, 33, 89, 221, ...
1, 7, 29, 123, 425, 1343, ...
1, 9, 49, 257, 1281, 5913, ...
1, 11, 81, 515, 3121, 16875, ...
MATHEMATICA
Table[Function[k, SeriesCoefficient[EllipticTheta[3, 0, x]^k/(1 - x), {x, 0, n^2}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten
Table[Function[k, SeriesCoefficient[1/(1 - x) Sum[x^i^2, {i, -n, n}]^k, {x, 0, n^2}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten
PROG
(PARI) T(n, k)={if(k==0, 1, polcoef(((1 + 2*sum(j=1, n, x^(j^2)) + O(x*x^(n^2)))^k)/(1-x), n^2))} \\ Andrew Howroyd, Sep 14 2019
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Ilya Gutkovskiy, Apr 17 2018
STATUS
approved