login
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals: A(n,k) = [x^(n^2)] theta_3(x)^k/(1 - x), where theta_3() is the Jacobi theta function.
21

%I #13 Sep 29 2019 08:39:09

%S 1,1,1,1,3,1,1,5,5,1,1,7,13,7,1,1,9,33,29,9,1,1,11,89,123,49,11,1,1,

%T 13,221,425,257,81,13,1,1,15,485,1343,1281,515,113,15,1,1,17,953,4197,

%U 5913,3121,925,149,17,1,1,19,1713,12435,23793,16875,6577,1419,197,19,1,1,21,2869,33809,88273,84769,42205,11833,2109,253,21,1

%N Square array A(n,k), n >= 0, k >= 0, read by antidiagonals: A(n,k) = [x^(n^2)] theta_3(x)^k/(1 - x), where theta_3() is the Jacobi theta function.

%C A(n,k) is the number of integer lattice points inside the k-dimensional hypersphere of radius n.

%H Andrew Howroyd, <a href="/A302997/b302997.txt">Table of n, a(n) for n = 0..1274</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/JacobiThetaFunctions.html">Jacobi Theta Functions</a>

%H <a href="/index/Su#ssq">Index entries for sequences related to sums of squares</a>

%F A(n,k) = [x^(n^2)] (1/(1 - x))*(Sum_{j=-infinity..infinity} x^(j^2))^k.

%e Square array begins:

%e 1, 1, 1, 1, 1, 1, ...

%e 1, 3, 5, 7, 9, 11, ...

%e 1, 5, 13, 33, 89, 221, ...

%e 1, 7, 29, 123, 425, 1343, ...

%e 1, 9, 49, 257, 1281, 5913, ...

%e 1, 11, 81, 515, 3121, 16875, ...

%t Table[Function[k, SeriesCoefficient[EllipticTheta[3, 0, x]^k/(1 - x), {x, 0, n^2}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten

%t Table[Function[k, SeriesCoefficient[1/(1 - x) Sum[x^i^2, {i, -n, n}]^k, {x, 0, n^2}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten

%o (PARI) T(n,k)={if(k==0, 1, polcoef(((1 + 2*sum(j=1, n, x^(j^2)) + O(x*x^(n^2)))^k)/(1-x), n^2))} \\ _Andrew Howroyd_, Sep 14 2019

%Y Columns k=0..10 give A000012, A005408, A000328, A000605, A055410, A055411, A055412, A055413, A055414, A055415, A055416.

%Y Rows k=0..10 give A000012, A005408, A055426, A055427, A055428, A055429, A055430, A055431, A055432, A055433, A055434.

%Y Main diagonal gives A302861.

%Y Cf. A000122, A122510, A302996, A302998.

%K nonn,tabl

%O 0,5

%A _Ilya Gutkovskiy_, Apr 17 2018