login
A122510
Array T(d,n) = number of integer lattice points inside the d-dimensional hypersphere of radius sqrt(n), read by ascending antidiagonals.
19
1, 1, 3, 1, 5, 3, 1, 7, 9, 3, 1, 9, 19, 9, 5, 1, 11, 33, 27, 13, 5, 1, 13, 51, 65, 33, 21, 5, 1, 15, 73, 131, 89, 57, 21, 5, 1, 17, 99, 233, 221, 137, 81, 21, 5, 1, 19, 129, 379, 485, 333, 233, 81, 25, 7, 1, 21, 163, 577, 953, 797, 573, 297, 93, 29, 7, 1, 23, 201, 835, 1713, 1793
OFFSET
1,3
COMMENTS
Number of solutions to sum_(i=1,..,d) x[i]^2 <= n, x[i] in Z. T(1,n)=A001650(n+1); T(2,n)=A057655(n); T(3,n)=A117609(n); T(4,n)=A046895(n); T(d,1)=A005408(d); T(d,2)=A058331(d).
FORMULA
Recurrence along rows: T(d,n)=T(d,n-1)+A122141(d,n) for n>=1; T(d,n)=sum_{i=0..n} A122141(d,i). Recurrence along columns: cf. A123937.
EXAMPLE
T(2,2)=9 counts 1 pair (0,0) with sum 0, 4 pairs (-1,0),(1,0),(0,-1),(0,1) with sum 1 and 4 pairs (-1,-1),(-1,1),(1,1),(1,-1) with sum 2.
Array T(d,n) with rows d=1,2,3... and columns n=0,1,2,3.. reads
1 3 3 3 5 5 5 5 5 7 7
1 5 9 9 13 21 21 21 25 29 37
1 7 19 27 33 57 81 81 93 123 147
1 9 33 65 89 137 233 297 321 425 569
1 11 51 131 221 333 573 893 1093 1343 1903
1 13 73 233 485 797 1341 2301 3321 4197 5757
1 15 99 379 953 1793 3081 5449 8893 12435 16859
1 17 129 577 1713 3729 6865 12369 21697 33809 47921
1 19 163 835 2869 7189 14581 27253 49861 84663 129303
1 21 201 1161 4541 12965 29285 58085 110105 198765 327829
MAPLE
T := proc(d, n) local i, cnts ; cnts := 0 ; for i from -trunc(sqrt(n)) to trunc(sqrt(n)) do if n-i^2 >= 0 then if d > 1 then cnts := cnts+T(d-1, n-i^2) ; else cnts := cnts+1 ; fi ; fi ; od ; RETURN(cnts) ; end: for diag from 1 to 14 do for n from 0 to diag-1 do d := diag-n ; printf("%d, ", T(d, n)) ; od ; od;
MATHEMATICA
t[d_, n_] := t[d, n] = t[d, n-1] + SquaresR[d, n]; t[d_, 0] = 1; Table[t[d-n, n], {d, 1, 12}, {n, 0, d-1}] // Flatten (* Jean-François Alcover, Jun 13 2013 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
R. J. Mathar, Oct 29 2006, Oct 31 2006
STATUS
approved