OFFSET
1,2
COMMENTS
For n >= 0, a(n+1) is the number of integers x with |x| <= sqrt(n), or equivalently the number of points in the Z^1 lattice of norm <= n+1. - David W. Wilson, Oct 22 2006
The burning number of a connected graph of order n is at most a(n). See Bessy et al. - Michel Marcus, Jun 18 2018
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 106.
LINKS
T. D. Noe, Table of n, a(n) for n = 1..10000
Stéphane Bessy, Anthony Bonato, Jeannette Janssen and Dieter Rautenbach, Bounds on the Burning Number, arXiv:1511.06023 [math.CO], 2015-2016.
Abraham Isgur, Vitaly Kuznetsov, and Stephen Tanny, A combinatorial approach for solving certain nested recursions with non-slow solutions, arXiv preprint arXiv:1202.0276 [math.CO], 2012.
FORMULA
a(n) = 1 + 2*floor(sqrt(n-1)), n > 0. - Antonio Esposito, Jan 21 2002
From Michael Somos, Apr 29 2003: (Start)
G.f.: theta_3(x)*x/(1-x).
a(n+1) = a(n) + A000122(n). (End)
a(1) = 1, a(2) = 3, a(3) = 3, a(n) = a(n-a(n-2))+2. - Branko Curgus, May 07 2010
a(n) = 2*ceiling(sqrt(n)) - 1. - Branko Curgus, May 07 2010
Seen as a triangle read by rows: T(n,k) = 2*(n-1), k=1..n. - Reinhard Zumkeller, Nov 14 2015
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/4 (A003881). - Amiram Eldar, Oct 01 2022
MATHEMATICA
a[1]=1, a[2]=3, a[3]=3, a[n_]:=a[n]=a[n-a[n-2]]+2 (* Branko Curgus, May 07 2010 *)
Flatten[Table[Table[n, {n}], {n, 1, 17, 2}]] (* Harvey P. Dale, Mar 31 2013 *)
PROG
(PARI) a(n)=if(n<1, 0, 1+2*sqrtint(n-1))
(Haskell)
a001650 n k = a001650_tabf !! (n-1) !! (k-1)
a001650_row n = a001650_tabf !! (n-1)
a001650_tabf = iterate (\xs@(x:_) -> map (+ 2) (x:x:xs)) [1]
a001650_list = concat a001650_tabf
-- Reinhard Zumkeller, Nov 14 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Michael Somos, Apr 29 2003
STATUS
approved