login
A001650
k appears k times (k odd).
19
1, 3, 3, 3, 5, 5, 5, 5, 5, 7, 7, 7, 7, 7, 7, 7, 9, 9, 9, 9, 9, 9, 9, 9, 9, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17
OFFSET
1,2
COMMENTS
For n >= 0, a(n+1) is the number of integers x with |x| <= sqrt(n), or equivalently the number of points in the Z^1 lattice of norm <= n+1. - David W. Wilson, Oct 22 2006
The burning number of a connected graph of order n is at most a(n). See Bessy et al. - Michel Marcus, Jun 18 2018
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 106.
LINKS
Stéphane Bessy, Anthony Bonato, Jeannette Janssen and Dieter Rautenbach, Bounds on the Burning Number, arXiv:1511.06023 [math.CO], 2015-2016.
Abraham Isgur, Vitaly Kuznetsov, and Stephen Tanny, A combinatorial approach for solving certain nested recursions with non-slow solutions, arXiv preprint arXiv:1202.0276 [math.CO], 2012.
FORMULA
a(n) = 1 + 2*floor(sqrt(n-1)), n > 0. - Antonio Esposito, Jan 21 2002
From Michael Somos, Apr 29 2003: (Start)
G.f.: theta_3(x)*x/(1-x).
a(n+1) = a(n) + A000122(n). (End)
a(1) = 1, a(2) = 3, a(3) = 3, a(n) = a(n-a(n-2))+2. - Branko Curgus, May 07 2010
a(n) = 2*ceiling(sqrt(n)) - 1. - Branko Curgus, May 07 2010
Seen as a triangle read by rows: T(n,k) = 2*(n-1), k=1..n. - Reinhard Zumkeller, Nov 14 2015
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/4 (A003881). - Amiram Eldar, Oct 01 2022
MATHEMATICA
a[1]=1, a[2]=3, a[3]=3, a[n_]:=a[n]=a[n-a[n-2]]+2 (* Branko Curgus, May 07 2010 *)
Flatten[Table[Table[n, {n}], {n, 1, 17, 2}]] (* Harvey P. Dale, Mar 31 2013 *)
PROG
(PARI) a(n)=if(n<1, 0, 1+2*sqrtint(n-1))
(Haskell)
a001650 n k = a001650_tabf !! (n-1) !! (k-1)
a001650_row n = a001650_tabf !! (n-1)
a001650_tabf = iterate (\xs@(x:_) -> map (+ 2) (x:x:xs)) [1]
a001650_list = concat a001650_tabf
-- Reinhard Zumkeller, Nov 14 2015
CROSSREFS
Partial sums of A000122.
Sequence in context: A126661 A369859 A162226 * A130175 A200266 A101290
KEYWORD
nonn,easy
EXTENSIONS
More terms from Michael Somos, Apr 29 2003
STATUS
approved