login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A001670
k appears k times (k even).
7
2, 2, 4, 4, 4, 4, 6, 6, 6, 6, 6, 6, 8, 8, 8, 8, 8, 8, 8, 8, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16
OFFSET
1,1
LINKS
FORMULA
a(n) = 2*floor(1/2 + sqrt(n)). - Antonio Esposito, Jan 21 2002; corrected by Branko Curgus, May 11 2010
With a different offset: g.f. = Sum_{j>=0} 2*x^(j^2+i)/(1-x). - Ralf Stephan, Mar 11 2003
From Branko Curgus, May 11 2010: (Start)
a(n) = a(n - a(n-2)) + 2; a(1)=2, a(2)=2.
a(n) = 2*round(sqrt(n)). (End)
G.f.: x^(3/4)*theta_2(0,x)/(1-x) where theta_2 is the second Jacobi theta function. - Robert Israel, Jan 14 2015
a(n) = 2*floor((sqrt(4*n-3)+1)/2). - Néstor Jofré, Apr 24 2017
MAPLE
seq(2*n $ 2*n, n = 1 .. 10); # Robert Israel, Jan 14 2015
MATHEMATICA
a[1]=2, a[2]=2, a[n_]:=a[n]=a[n-a[n-2]]+2 (* Branko Curgus, May 11 2010 *)
Flatten[Table[Table[n, {n}], {n, 2, 16, 2}]] (* Harvey P. Dale, May 31 2012 *)
PROG
(Magma) [2*Round(Sqrt(n)): n in [1..70]]; // Vincenzo Librandi, Jun 23 2011
(PARI) a(n)=round(sqrt(n))<<1 \\ Charles R Greathouse IV, Jun 23 2011
(MATLAB) a = @(n) 2*floor((sqrt(4*n-3)+1)/2); % handle function // Néstor Jofré, Apr 24 2017
(Python)
from math import isqrt
def A001670(n): return (m:=isqrt(n))+int((n-m*(m+1)<<2)>=1)<<1 # Chai Wah Wu, Jul 29 2022
CROSSREFS
Equals A130829(n) - 1.
Sequence in context: A261009 A375347 A239896 * A100144 A076222 A177692
KEYWORD
nonn,easy
EXTENSIONS
Offset changed from 2 to 1 by Vincenzo Librandi, Jun 23 2011
STATUS
approved