

A261009


Write 2^n in base 3, add up the "digits".


5



1, 2, 2, 4, 4, 4, 4, 6, 4, 8, 8, 10, 10, 8, 10, 16, 12, 14, 12, 16, 14, 18, 16, 12, 10, 12, 14, 20, 20, 22, 24, 26, 24, 22, 22, 22, 18, 20, 26, 28, 28, 28, 26, 30, 30, 30, 26, 26, 26, 32, 38, 40, 38, 38, 28, 34, 40, 42, 38, 40, 46, 40, 38, 42, 48, 44, 42, 40, 42, 48, 48, 44
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

Comment from JeanPaul Allouche, Oct 25 2015: As mentioned by Holdum et al. (2015) the following problem, cited in "Concrete Mathematics" by Graham, Knuth, and Patashnik (1994), is still open: prove that for all n > 256, binomial(2n,n) is either divisible by 4 or by 9 (cf. A000984). This can be easily reduced to show that, for all k >= 9, 2*a(k)  a(k+1) >= 4. This has been proved up to huge values of k (Holdum et al. mention k = 10^{13}).
For additional information about the divisibility of binomial(2n,n) by squares see the comments and references in A000984,  N. J. A. Sloane, Oct 29 2015


LINKS

Giovanni Resta, Table of n, a(n) for n = 0..10000
Cernenoks J., Iraids J., Opmanis M., Opmanis R., Podnieks K., Integer complexity: experimental and analytical results II, arXiv:1409.0446 [math.NT] (September 2014)
Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Math., 2nd ed.; AddisonWesley, 1994
Sebastian Tim Holdum, Frederik Ravn Klausen, Peter Michael Reichstein Rasmussen, Powers in prime bases and a problem on central coefficients, Integers 15 (2015), #A43
K. Podnieks, Digits of pi: limits to the seeming randomness, arXiv:1411.3911 [math.NT], 2014.


FORMULA

a(n) = A053735(A000079(n)).  Michel Marcus, Aug 14 2015


EXAMPLE

2^7 = 128_10 = 11202_3, so a(7) = 1+1+2+0+2 = 6.


MAPLE

S:=n>add(i, i in convert(2^n, base, 3)); [seq(S(n), n=0..100)];


MATHEMATICA

Table[Total@ IntegerDigits[2^n, 3], {n, 0, 100}] (* Giovanni Resta, Aug 14 2015 *)


PROG

(PARI) a(n) = vecsum(digits(2^n, 3)); \\ Michel Marcus, Aug 14 2015
(Haskell)
a261009 = a053735 . a000079  Reinhard Zumkeller, Aug 14 2015


CROSSREFS

Cf. A000079, A000984, A053735, A007089.
Sum of digits of k^n in base b for various pairs (k,b): A001370 (2,10), A011754 (3,2), A261009 (2,3), A261010 (5,3).
Sequence in context: A080374 A165040 A035683 * A239896 A001670 A100144
Adjacent sequences: A261006 A261007 A261008 * A261010 A261011 A261012


KEYWORD

nonn,base


AUTHOR

N. J. A. Sloane, Aug 14 2015


STATUS

approved



