login
A035683
Number of partitions of n into parts 8k+1 and 8k+6 with at least one part of each type.
4
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 4, 4, 4, 4, 5, 5, 7, 7, 10, 11, 12, 12, 14, 14, 18, 19, 24, 26, 29, 29, 33, 34, 41, 43, 51, 55, 61, 63, 71, 73, 85, 90, 102, 110, 122, 126, 141, 146, 164, 174, 194, 207, 230, 239, 263, 275, 304, 322, 355, 377, 414, 433, 473, 495
OFFSET
1,13
LINKS
FORMULA
G.f. : (-1 + 1/Product_{k>=0} (1 - x^(8 k + 1)))*(-1 + 1/Product_{k>=0} (1 - x^(8 k + 6). - Robert Price, Aug 15 2020
MATHEMATICA
nmax = 68; s1 = Range[0, nmax/8]*8 + 1; s2 = Range[0, nmax/8]*8 + 6;
Table[Count[IntegerPartitions[n, All, s1~Join~s2],
x_ /; ContainsAny[x, s1 ] && ContainsAny[x, s2 ]], {n, 1, nmax}] (* Robert Price, Aug 15 2020 *)
nmax = 68; l = Rest@CoefficientList[Series[(-1 + 1/Product[(1 - x^(8 k + 1)), {k, 0, nmax}])*(-1 + 1/Product[(1 - x^(8 k + 6)), {k, 0, nmax}]), {x, 0, nmax}], x] (* Robert Price, Aug 15 2020*)
KEYWORD
nonn
STATUS
approved