login
A035685
Number of partitions of n into parts 8k+2 and 8k+3 with at least one part of each type.
4
0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 2, 1, 4, 2, 4, 4, 5, 4, 7, 5, 10, 7, 12, 11, 14, 13, 18, 15, 24, 19, 28, 27, 33, 31, 42, 36, 51, 45, 60, 58, 71, 68, 87, 79, 103, 96, 120, 118, 141, 137, 169, 159, 197, 189, 228, 226, 266, 262, 314, 302, 362, 355, 416, 416, 482, 478, 561, 550
OFFSET
1,11
LINKS
FORMULA
G.f.: (-1 + 1/Product_{k>=0} (1 - x^(8 k + 2)))*(-1 + 1/Product_{k>=0} (1 - x^(8 k + 3))). - Robert Price, Aug 15 2020
MATHEMATICA
nmax = 68; s1 = Range[0, nmax/8]*8 + 2; s2 = Range[0, nmax/8]*8 + 3;
Table[Count[IntegerPartitions[n, All, s1~Join~s2],
x_ /; ContainsAny[x, s1 ] && ContainsAny[x, s2 ]], {n, 1, nmax}] (* Robert Price, Aug 15 2020 *)
nmax = 68; l = Rest@CoefficientList[Series[(-1 + 1/Product[(1 - x^(8 k + 2)), {k, 0, nmax}])*(-1 + 1/Product[(1 - x^(8 k + 3)), {k, 0, nmax}]), {x, 0, nmax}], x] (* Robert Price, Aug 15 2020*)
KEYWORD
nonn
STATUS
approved