login
A035618
Number of partitions of n into parts 3k and 3k+1 with at least one part of each type.
82
0, 0, 0, 1, 1, 1, 4, 4, 4, 10, 11, 11, 22, 25, 26, 44, 51, 54, 84, 98, 105, 152, 178, 193, 266, 312, 341, 452, 528, 581, 749, 873, 964, 1214, 1409, 1561, 1930, 2234, 2479, 3018, 3478, 3866, 4647, 5339, 5937, 7061, 8081, 8991, 10594, 12089, 13447, 15721
OFFSET
1,7
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..1000 (first 75 terms from Robert Price)
FORMULA
G.f.: (-1 + 1/Product_{k>=1} (1 - x^(3 k)))*(-1 + 1/Product_{k>=0} (1 - x^(3 k + 1))). - Robert Price, Aug 16 2020
MATHEMATICA
nmax = 52; kmax = nmax/3; s1 = Range[1, nmax/3]*3; s2 = Range[0, nmax/3]*3 + 1;
Table[Count[IntegerPartitions[n, All, s1~Join~s2],
x_ /; ContainsAny[x, s1 ] && ContainsAny[x, s2 ]], {n, 1, nmax}] (* Robert Price, Aug 06 2020 *)
nmax = 52; l = Rest@CoefficientList[Series[(-1 + 1/Product[(1 - x^(3 k)), {k, 1, nmax}])*(-1 + 1/Product[(1 - x^(3 k + 1)), {k, 0, nmax}]), {x, 0, nmax}], x] (* Robert Price, Aug 16 2020*)
CROSSREFS
KEYWORD
nonn
STATUS
approved