login
A035681
Number of partitions of n into parts 8k+1 and 8k+4 with at least one part of each type.
3
0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 5, 5, 5, 5, 8, 8, 8, 8, 14, 15, 15, 15, 22, 23, 23, 23, 34, 37, 38, 38, 51, 54, 55, 55, 74, 81, 84, 85, 108, 116, 119, 120, 151, 165, 172, 175, 214, 230, 238, 241, 291, 317, 332, 339, 402, 434, 451, 459, 538, 584, 613, 628, 727, 784
OFFSET
1,9
LINKS
FORMULA
G.f. : (-1 + 1/Product_{k>=0} (1 - x^(8 k + 1)))*(-1 + 1/Product_{k>=0} (1 - x^(8 k + 4). - Robert Price, Aug 15 2020
MATHEMATICA
nmax = 66; s1 = Range[0, nmax/8]*8 + 1; s2 = Range[0, nmax/8]*8 + 4;
Table[Count[IntegerPartitions[n, All, s1~Join~s2],
x_ /; ContainsAny[x, s1 ] && ContainsAny[x, s2 ]], {n, 1, nmax}] (* Robert Price, Aug 15 2020 *)
nmax = 66; l = Rest@CoefficientList[Series[(-1 + 1/Product[(1 - x^(8 k + 1)), {k, 0, nmax}])*(-1 + 1/Product[(1 - x^(8 k + 4)), {k, 0, nmax}]), {x, 0, nmax}], x] (* Robert Price, Aug 15 2020*)
KEYWORD
nonn
STATUS
approved