login
A195601
Engel expansion of beta = 3/(2*log(alpha/2)); alpha = A195596.
7
1, 2, 2, 2, 2, 5, 5, 5, 20, 36, 78, 842, 5291, 10373, 17340, 28619, 35586, 93572, 98045, 2470364, 13603654, 14328528, 16490766, 833971648, 1788088151, 9592330101, 10952282168, 40005288076, 54302548920, 118523737357, 776601533408, 1241894797770, 24485470725324
OFFSET
1,2
COMMENTS
beta = 1.95302570335815413945406288542575380414251340201036319609354... is used to measure the expected height of random binary search trees.
Cf. A006784 for definition of Engel expansion.
REFERENCES
F. Engel, Entwicklung der Zahlen nach Stammbrüchen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmänner in Marburg, 1913, pp. 190-191.
LINKS
F. Engel, Entwicklung der Zahlen nach Stammbruechen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg, 1913, pp. 190-191. English translation by Georg Fischer, included with his permission.
P. Erdős and Jeffrey Shallit, New bounds on the length of finite Pierce and Engel series, Sem. Theor. Nombres Bordeaux (2) 3 (1991), no. 1, 43-53.
B. Reed, The height of a random binary search tree, J. ACM, 50 (2003), 306-332.
Eric Weisstein's World of Mathematics, Engel Expansion
Wikipedia, Engel Expansion
FORMULA
beta = 3/(2*log(alpha/2)) = 3*alpha/(2*alpha-2), where alpha = A195596 = -1/W(-exp(-1)/2) and W is the Lambert W function.
A195582(n)/A195583(n) = alpha*log(n) - beta*log(log(n)) + O(1).
MAPLE
alpha:= solve(alpha*log((2*exp(1))/alpha)=1, alpha):
beta:= 3/(2*log(alpha/2)):
engel:= (r, n)-> `if`(n=0 or r=0, NULL, [ceil(1/r), engel(r*ceil(1/r)-1, n-1)][]):
Digits:=400: engel(evalf(beta), 39);
MATHEMATICA
f:= N[-1/ProductLog[-1/(2*E)], 500001]; EngelExp[A_, n_]:= Join[Array[1 &, Floor[A]], First@Transpose@NestList[{Ceiling[1/Expand[#[[1]] #[[2]] - 1]], Expand[#[[1]] #[[2]] - 1]} &, {Ceiling[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; EngelExp[N[3/(2*Log[f/2]), 500000], 25] (* G. C. Greubel, Oct 21 2016 *)
CROSSREFS
Cf. A195599 (decimal expansion), A195600 (continued fraction), A195581, A195582, A195583, A195596, A195597, A195598.
Sequence in context: A288026 A141299 A035681 * A352723 A222255 A350970
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 21 2011
STATUS
approved