login
A195599
Decimal expansion of beta = 3/(2*log(alpha/2)), where alpha = A195596.
7
1, 9, 5, 3, 0, 2, 5, 7, 0, 3, 3, 5, 8, 1, 5, 4, 1, 3, 9, 4, 5, 4, 0, 6, 2, 8, 8, 5, 4, 2, 5, 7, 5, 3, 8, 0, 4, 1, 4, 2, 5, 1, 3, 4, 0, 2, 0, 1, 0, 3, 6, 3, 1, 9, 6, 0, 9, 3, 5, 4, 2, 8, 8, 1, 8, 0, 6, 9, 6, 0, 7, 9, 7, 2, 3, 3, 6, 2, 5, 2, 5, 6, 9, 7, 5, 2, 1, 8, 9, 2, 9, 5, 3, 3, 5, 3, 1, 5, 1, 9, 7, 3, 2, 3, 1
OFFSET
1,2
COMMENTS
beta is used to measure the expected height of random binary search trees.
FORMULA
beta = 3/(2*log(alpha/2)) = 3*alpha/(2*alpha-2), where alpha = A195596 = -1/W(-exp(-1)/2) and W is the Lambert W function.
A195582(n)/A195583(n) = alpha*log(n) - beta*log(log(n)) + O(1).
EXAMPLE
1.95302570335815413945406288542575380414251340201036319609354...
MAPLE
alpha:= solve(alpha*log((2*exp(1))/alpha)=1, alpha):
beta:= 3/(2*log(alpha/2)):
bs:= convert(evalf(beta/10, 130), string):
seq(parse(bs[n+1]), n=1..120);
MATHEMATICA
RealDigits[ 3/(2 + 2*ProductLog[-1/(2*E)]) , 10, 105] // First (* Jean-François Alcover, Feb 19 2013 *)
CROSSREFS
Cf. A195600 (continued fraction), A195601 (Engel expansion), A195581, A195582, A195583, A195596, A195597, A195598.
Sequence in context: A094129 A021917 A128757 * A021516 A158270 A154543
KEYWORD
nonn,cons
AUTHOR
Alois P. Heinz, Sep 21 2011
STATUS
approved