login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A195597
Continued fraction for alpha, the unique solution on [2,oo) of the equation alpha*log((2*e)/alpha)=1.
6
4, 3, 4, 1, 1, 1, 11, 2, 19, 1, 3, 1, 1, 1, 14, 1, 3, 5, 58, 3, 1, 10, 1, 1, 6, 5, 13, 127, 1, 1, 7, 13, 1, 2, 1, 2, 2, 1, 2, 2, 4, 2, 4, 1, 1, 6, 9, 3, 1, 16, 1, 3, 2, 32, 3, 1, 1, 2, 11, 1, 13, 4, 2, 1, 1, 1, 1, 2, 2, 6, 1, 1, 1, 2, 25, 1, 5, 5, 1, 1, 1, 1, 5, 2, 3, 2, 5, 25, 1, 190, 2, 1, 5, 3, 1, 20, 1, 1, 2, 1, 3
OFFSET
0,1
COMMENTS
alpha is used to measure the expected height of random binary search trees.
FORMULA
alpha = -1/W(-exp(-1)/2), where W is the Lambert W function.
A195582(n)/A195583(n) = alpha*log(n) - beta*log(log(n)) + O(1), with beta = 1.953... (A195599).
EXAMPLE
4.31107040700100503504707609644689027839156299804028805066937...
MAPLE
with(numtheory):
alpha:= solve(alpha*log((2*exp(1))/alpha)=1, alpha):
cfrac(evalf(alpha, 130), 100, 'quotients')[];
MATHEMATICA
alpha = -1/ProductLog[-1/(2*E)]; ContinuedFraction[alpha, 101] (* Jean-François Alcover, Jun 20 2013 *)
CROSSREFS
Cf. A195596 (decimal expansion), A195598 (Engel expansion), A195581, A195582, A195583, A195599, A195600, A195601.
Sequence in context: A070431 A070511 A066340 * A143505 A245727 A280822
KEYWORD
nonn,cofr
AUTHOR
Alois P. Heinz, Sep 21 2011
EXTENSIONS
Offset changed by Andrew Howroyd, Jul 03 2024
STATUS
approved