login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Continued fraction for alpha, the unique solution on [2,oo) of the equation alpha*log((2*e)/alpha)=1.
6

%I #17 Jul 03 2024 10:54:32

%S 4,3,4,1,1,1,11,2,19,1,3,1,1,1,14,1,3,5,58,3,1,10,1,1,6,5,13,127,1,1,

%T 7,13,1,2,1,2,2,1,2,2,4,2,4,1,1,6,9,3,1,16,1,3,2,32,3,1,1,2,11,1,13,4,

%U 2,1,1,1,1,2,2,6,1,1,1,2,25,1,5,5,1,1,1,1,5,2,3,2,5,25,1,190,2,1,5,3,1,20,1,1,2,1,3

%N Continued fraction for alpha, the unique solution on [2,oo) of the equation alpha*log((2*e)/alpha)=1.

%C alpha is used to measure the expected height of random binary search trees.

%H B. Reed, <a href="http://doi.acm.org/10.1145/765568.765571">The height of a random binary search tree</a>, J. ACM, 50 (2003), 306-332.

%F alpha = -1/W(-exp(-1)/2), where W is the Lambert W function.

%F A195582(n)/A195583(n) = alpha*log(n) - beta*log(log(n)) + O(1), with beta = 1.953... (A195599).

%e 4.31107040700100503504707609644689027839156299804028805066937...

%p with(numtheory):

%p alpha:= solve(alpha*log((2*exp(1))/alpha)=1, alpha):

%p cfrac(evalf(alpha, 130), 100, 'quotients')[];

%t alpha = -1/ProductLog[-1/(2*E)]; ContinuedFraction[alpha, 101] (* _Jean-François Alcover_, Jun 20 2013 *)

%Y Cf. A195596 (decimal expansion), A195598 (Engel expansion), A195581, A195582, A195583, A195599, A195600, A195601.

%K nonn,cofr

%O 0,1

%A _Alois P. Heinz_, Sep 21 2011

%E Offset changed by _Andrew Howroyd_, Jul 03 2024