The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A070511 a(n) = n^4 mod 6. 1
 0, 1, 4, 3, 4, 1, 0, 1, 4, 3, 4, 1, 0, 1, 4, 3, 4, 1, 0, 1, 4, 3, 4, 1, 0, 1, 4, 3, 4, 1, 0, 1, 4, 3, 4, 1, 0, 1, 4, 3, 4, 1, 0, 1, 4, 3, 4, 1, 0, 1, 4, 3, 4, 1, 0, 1, 4, 3, 4, 1, 0, 1, 4, 3, 4, 1, 0, 1, 4, 3, 4, 1, 0, 1, 4, 3, 4, 1, 0, 1, 4, 3, 4, 1, 0, 1, 4, 3, 4, 1, 0, 1, 4, 3, 4, 1, 0, 1, 4, 3, 4 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS a(n) = A070431(n). Proof: n^4-n^2 == 0 (mod 6) is shown explicitly for n = 0..5, then the induction n -> n+6 for the 4th order polynomial followed by binomial expansion of (n+6)^k concludes that the zero (mod 6) is periodically extended to the other integers. -  R. J. Mathar, Jul 23 2009 Equivalently n^6 mod 6. - Zerinvary Lajos, Nov 06 2009 Equivalently: n^(2*m + 4) mod 6; n^(2*m + 2) mod 6. - G. C. Greubel, Apr 01 2016 LINKS Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,1) FORMULA G.f. -x*(1+4*x+3*x^2+4*x^3+x^4) / ( (x-1)*(1+x)*(1+x+x^2)*(x^2-x+1) ). - R. J. Mathar, Mar 14 2011 From G. C. Greubel, Apr 01 2016: (Start) a(6*m) = 0. a(2*n) = 4*A011655(n). a(n) = (1/6)*(13 + 3*(-1)^n - 12*cos(n*Pi/3) - 4*cos(2*n*Pi/3)). G.f.: (x +4*x^2 +3*x^3 + 4*x^4 +x^5)/(1 - x^6). (End) MATHEMATICA Table[Mod[n^4, 6], {n, 0, 200}] (* Vladimir Joseph Stephan Orlovsky, Apr 21 2011 *) PowerMod[Range[0, 100], 4, 6] (* Bruno Berselli, Mar 31 2016 *) PROG (Sage) [power_mod(n, 4, 6) for n in range(0, 101)] # Zerinvary Lajos, Oct 30 2009 (MAGMA) [Modexp(n, 4, 6): n in [0..100]]; // Bruno Berselli, Mar 31 2016 (PARI) a(n)=n^4%6 \\ Charles R Greathouse IV, Apr 06 2016 CROSSREFS Cf. A070430, A070431. Sequence in context: A243149 A048156 A070431 * A066340 A195597 A143505 Adjacent sequences:  A070508 A070509 A070510 * A070512 A070513 A070514 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, May 13 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 24 06:11 EDT 2021. Contains 345416 sequences. (Running on oeis4.)