Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Jun 29 2020 18:11:22
%S 1,9,5,3,0,2,5,7,0,3,3,5,8,1,5,4,1,3,9,4,5,4,0,6,2,8,8,5,4,2,5,7,5,3,
%T 8,0,4,1,4,2,5,1,3,4,0,2,0,1,0,3,6,3,1,9,6,0,9,3,5,4,2,8,8,1,8,0,6,9,
%U 6,0,7,9,7,2,3,3,6,2,5,2,5,6,9,7,5,2,1,8,9,2,9,5,3,3,5,3,1,5,1,9,7,3,2,3,1
%N Decimal expansion of beta = 3/(2*log(alpha/2)), where alpha = A195596.
%C beta is used to measure the expected height of random binary search trees.
%H Alois P. Heinz, <a href="/A195599/b195599.txt">Table of n, a(n) for n = 1..10000</a>
%H B. Reed, <a href="http://doi.acm.org/10.1145/765568.765571">The height of a random binary search tree</a>, J. ACM, 50 (2003), 306-332.
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Binary_search_tree">Binary search tree</a>
%H <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a>
%H <a href="/index/Tra#trees">Index entries for sequences related to trees</a>
%F beta = 3/(2*log(alpha/2)) = 3*alpha/(2*alpha-2), where alpha = A195596 = -1/W(-exp(-1)/2) and W is the Lambert W function.
%F A195582(n)/A195583(n) = alpha*log(n) - beta*log(log(n)) + O(1).
%e 1.95302570335815413945406288542575380414251340201036319609354...
%p alpha:= solve(alpha*log((2*exp(1))/alpha)=1, alpha):
%p beta:= 3/(2*log(alpha/2)):
%p bs:= convert(evalf(beta/10, 130), string):
%p seq(parse(bs[n+1]), n=1..120);
%t RealDigits[ 3/(2 + 2*ProductLog[-1/(2*E)]) , 10, 105] // First (* _Jean-François Alcover_, Feb 19 2013 *)
%Y Cf. A195600 (continued fraction), A195601 (Engel expansion), A195581, A195582, A195583, A195596, A195597, A195598.
%K nonn,cons
%O 1,2
%A _Alois P. Heinz_, Sep 21 2011