login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A001672
a(n) = floor(Pi^n).
25
1, 3, 9, 31, 97, 306, 961, 3020, 9488, 29809, 93648, 294204, 924269, 2903677, 9122171, 28658145, 90032220, 282844563, 888582403, 2791563949, 8769956796, 27551631842, 86556004191, 271923706893, 854273519913, 2683779414317, 8431341691876, 26487841119103
OFFSET
0,2
FORMULA
a(n)^(1/n) converges to Pi because |1 - a(n)/Pi^n| = |Pi^n - a(n)|/Pi^n < 1/Pi^n and so a(n)^(1/n) = (Pi^n*(1+o(1)))^(1/n) = Pi*(1+o(1)). - Hieronymus Fischer, Jan 22 2006
MATHEMATICA
Table[Floor[Pi^n], {n, 0, 50}] (* Vladimir Joseph Stephan Orlovsky, Dec 12 2008 *)
PROG
(PARI) A001672(n)=Pi^n\1 \\ An error message will say so if default(realprecision) must be increased. - M. F. Hasler, May 27 2018
CROSSREFS
See also A002160: closest integer to Pi^n.
Cf. A001673.
Sequence in context: A034550 A018370 A183519 * A138281 A049416 A148959
KEYWORD
nonn
STATUS
approved