login
A350279
Irregular triangle T(n,k) read by rows in which row n lists the iterates of the Farkas map (A349407) from 2*n - 1 to 1.
8
1, 3, 1, 5, 3, 1, 7, 11, 17, 9, 3, 1, 9, 3, 1, 11, 17, 9, 3, 1, 13, 7, 11, 17, 9, 3, 1, 15, 5, 3, 1, 17, 9, 3, 1, 19, 29, 15, 5, 3, 1, 21, 7, 11, 17, 9, 3, 1, 23, 35, 53, 27, 9, 3, 1, 25, 13, 7, 11, 17, 9, 3, 1, 27, 9, 3, 1, 29, 15, 5, 3, 1
OFFSET
1,2
LINKS
Paolo Xausa, Table of n, a(n) for n = 1..12301 (rows 1..1000 of triangle, flattened).
H. M. Farkas, "Variants of the 3N+1 Conjecture and Multiplicative Semigroups", in Entov, Pinchover and Sageev, Geometry, Spectral Theory, Groups, and Dynamics, Contemporary Mathematics, vol. 387, American Mathematical Society, 2005, p. 121.
J. C. Lagarias, ed., The Ultimate Challenge: The 3x+1 Problem, American Mathematical Society, 2010, p. 74.
FORMULA
T(n,1) = 2*n-1; T(n,k) = A349407((T(n,k-1)+1)/2), where n >= 1 and k >= 2.
EXAMPLE
Written as an irregular triangle, the sequence begins:
n\k 1 2 3 4 5 6 7
-------------------------------
1: 1
2: 3 1
3: 5 3 1
4: 7 11 17 9 3 1
5: 9 3 1
6: 11 17 9 3 1
7: 13 7 11 17 9 3 1
8: 15 5 3 1
9: 17 9 3 1
10: 19 29 15 5 3 1
11: 21 7 11 17 9 3 1
12: 23 35 53 27 9 3 1
MATHEMATICA
FarkasStep[x_] := Which[Divisible[x, 3], x/3, Mod[x, 4] == 3, (3*x + 1)/2, True, (x + 1)/2];
Array[Most[FixedPointList[FarkasStep, 2*# - 1]] &, 15] (* Paolo Xausa, Sep 03 2024 *)
CROSSREFS
Cf. A349407, A375909 (# of iterations), A375910 (row sums), A375911 (row maxs).
Cf. A070165.
Sequence in context: A159291 A122510 A102662 * A142048 A117563 A060439
KEYWORD
nonn,easy,tabf
AUTHOR
Paolo Xausa, Dec 22 2021
STATUS
approved