login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A046895 Sizes of successive clusters in Z^4 lattice. 12
1, 9, 33, 65, 89, 137, 233, 297, 321, 425, 569, 665, 761, 873, 1065, 1257, 1281, 1425, 1737, 1897, 2041, 2297, 2585, 2777, 2873, 3121, 3457, 3777, 3969, 4209, 4785, 5041, 5065, 5449, 5881, 6265, 6577, 6881, 7361, 7809, 7953, 8289, 9057 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Number of lattice points inside or on the 4-sphere x^2 + y^2 + z^2 + u^2 = n. - T. D. Noe, Mar 14 2009

LINKS

T. D. Noe and Charles R Greathouse IV, Table of n, a(n) for n = 0..10000 (terms up to 1000 from Noe)

A. Walfisz, Weylsche Exponentialsummen in der neueren Zahlentheorie, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Volume 44, Issue 12, page 607, 1964.

FORMULA

a(n) = A122510(4,n). a(n^2) = A055410(n). - R. J. Mathar, Apr 21 2010

G.f.: T3(q)^4/(1-q) where T3(q) = 1 + 2*Sum_{k>=1} q^(k^2). - Joerg Arndt, Apr 08 2013

Pi^2/2 * (sqrt(n)-1)^4 < a(n) < Pi^2/2 * (sqrt(n)+1)^4 for n > 0. - Charles R Greathouse IV, Feb 17 2015

a(n) = Pi^2/2 * n^2 + O(n (log n)^(2/3)) using a result of Walfisz. - Charles R Greathouse IV, Feb 18 2015

a(n) = 1 + 8*A024916(n) - 32*A024916(floor(n/4)) by Jacobi's four-square theorem. - Peter J. Taylor, Jun 03 2020

MATHEMATICA

Accumulate[ Table[ SquaresR[4, n], {n, 0, 42}]] (* Jean-François Alcover, May 11 2012 *)

QP = QPochhammer; s = (QP[q^2]^5/(QP[q]^2*QP[q^4]^2))^4/(1-q) + O[q]^50; CoefficientList[s, q] (* Jean-François Alcover, Nov 25 2015, after Joerg Arndt *)

PROG

(PARI)

q='q+O('q^66);

Vec((eta(q^2)^5/(eta(q)^2*eta(q^4)^2))^4/(1-q))

/* Joerg Arndt, Apr 08 2013 */

CROSSREFS

Partial sums of A000118.

Cf. A117609

Sequence in context: A146262 A161430 A175369 * A165392 A145923 A092562

Adjacent sequences:  A046892 A046893 A046894 * A046896 A046897 A046898

KEYWORD

nonn,easy,nice

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 15 19:31 EDT 2021. Contains 345049 sequences. (Running on oeis4.)