login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A046895 Sizes of successive clusters in Z^4 lattice. 7
1, 9, 33, 65, 89, 137, 233, 297, 321, 425, 569, 665, 761, 873, 1065, 1257, 1281, 1425, 1737, 1897, 2041, 2297, 2585, 2777, 2873, 3121, 3457, 3777, 3969, 4209, 4785, 5041, 5065, 5449, 5881, 6265, 6577, 6881, 7361, 7809, 7953, 8289, 9057 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Number of lattice points inside or on the 4-sphere x^2 + y^2 + z^2 + u^2 = n. - T. D. Noe, Mar 14 2009

LINKS

T. D. Noe and Charles R Greathouse IV, Table of n, a(n) for n = 0..10000 (terms up to 1000 from Noe)

A. Walfisz, Weylsche Exponentialsummen in der neueren Zahlentheorie, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Volume 44, Issue 12, page 607, 1964.

FORMULA

a(n) = A122510(4,n). a(n^2) = A055410(n). - R. J. Mathar, Apr 21 2010

G.f.: T3(q)^4/(1-q) where T3(q) = 1 + 2*Sum_{k>=1} q^(k^2). - Joerg Arndt, Apr 08 2013

Pi^2/2 * (sqrt(n)-1)^4 < a(n) < Pi^2/2 * (sqrt(n)+1)^4 for n > 0. - Charles R Greathouse IV, Feb 17 2015

a(n) = Pi^2/2 * n^2 + O(n (log n)^(2/3)) using a result of Walfisz. - Charles R Greathouse IV, Feb 18 2015

MATHEMATICA

Accumulate[ Table[ SquaresR[4, n], {n, 0, 42}]] (* Jean-François Alcover, May 11 2012 *)

QP = QPochhammer; s = (QP[q^2]^5/(QP[q]^2*QP[q^4]^2))^4/(1-q) + O[q]^50; CoefficientList[s, q] (* Jean-François Alcover, Nov 25 2015, after Joerg Arndt *)

PROG

(PARI)

q='q+O('q^66);

Vec((eta(q^2)^5/(eta(q)^2*eta(q^4)^2))^4/(1-q))

/* Joerg Arndt, Apr 08 2013 */

CROSSREFS

Partial sums of A000118.

Cf. A117609

Sequence in context: A146262 A161430 A175369 * A165392 A145923 A092562

Adjacent sequences:  A046892 A046893 A046894 * A046896 A046897 A046898

KEYWORD

nonn,easy,nice

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 09:33 EST 2019. Contains 329843 sequences. (Running on oeis4.)