The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A046895 Sizes of successive clusters in Z^4 lattice. 12
 1, 9, 33, 65, 89, 137, 233, 297, 321, 425, 569, 665, 761, 873, 1065, 1257, 1281, 1425, 1737, 1897, 2041, 2297, 2585, 2777, 2873, 3121, 3457, 3777, 3969, 4209, 4785, 5041, 5065, 5449, 5881, 6265, 6577, 6881, 7361, 7809, 7953, 8289, 9057 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Number of lattice points inside or on the 4-sphere x^2 + y^2 + z^2 + u^2 = n. - T. D. Noe, Mar 14 2009 LINKS T. D. Noe and Charles R Greathouse IV, Table of n, a(n) for n = 0..10000 (terms up to 1000 from Noe) A. Walfisz, Weylsche Exponentialsummen in der neueren Zahlentheorie, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Volume 44, Issue 12, page 607, 1964. FORMULA a(n) = A122510(4,n). a(n^2) = A055410(n). - R. J. Mathar, Apr 21 2010 G.f.: T3(q)^4/(1-q) where T3(q) = 1 + 2*Sum_{k>=1} q^(k^2). - Joerg Arndt, Apr 08 2013 Pi^2/2 * (sqrt(n)-1)^4 < a(n) < Pi^2/2 * (sqrt(n)+1)^4 for n > 0. - Charles R Greathouse IV, Feb 17 2015 a(n) = Pi^2/2 * n^2 + O(n (log n)^(2/3)) using a result of Walfisz. - Charles R Greathouse IV, Feb 18 2015 a(n) = 1 + 8*A024916(n) - 32*A024916(floor(n/4)) by Jacobi's four-square theorem. - Peter J. Taylor, Jun 03 2020 MATHEMATICA Accumulate[ Table[ SquaresR[4, n], {n, 0, 42}]] (* Jean-François Alcover, May 11 2012 *) QP = QPochhammer; s = (QP[q^2]^5/(QP[q]^2*QP[q^4]^2))^4/(1-q) + O[q]^50; CoefficientList[s, q] (* Jean-François Alcover, Nov 25 2015, after Joerg Arndt *) PROG (PARI) q='q+O('q^66); Vec((eta(q^2)^5/(eta(q)^2*eta(q^4)^2))^4/(1-q)) /* Joerg Arndt, Apr 08 2013 */ CROSSREFS Partial sums of A000118. Cf. A117609 Sequence in context: A146262 A161430 A175369 * A165392 A145923 A092562 Adjacent sequences:  A046892 A046893 A046894 * A046896 A046897 A046898 KEYWORD nonn,easy,nice AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 15 19:31 EDT 2021. Contains 345049 sequences. (Running on oeis4.)