login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A145923
Second bisection of A061041: a(n) = A061041(2n+1) = (2*n+1)*(2*n+9).
5
9, 33, 65, 105, 153, 209, 273, 345, 425, 513, 609, 713, 825, 945, 1073, 1209, 1353, 1505, 1665, 1833, 2009, 2193, 2385, 2585, 2793, 3009, 3233, 3465, 3705, 3953, 4209, 4473, 4745, 5025, 5313, 5609, 5913, 6225, 6545, 6873, 7209, 7553, 7905, 8265, 8633, 9009, 9393
OFFSET
0,1
FORMULA
a(n) = (2*n+1)*(2*n+9).
G.f.: (9 + 6*x - 7*x^2)/(1-x)^3 . - R. J. Mathar, Oct 23 2016
E.g.f.: (9 + 24*x + 4*x^2)*exp(x). - G. C. Greubel, Mar 23 2024
MATHEMATICA
A145923[n_]:=4n^2+20n+9; Array[A145923, 100, 0] (* or *)
LinearRecurrence[{3, -3, 1}, {9, 33, 65}, 100] (* Paolo Xausa, Dec 05 2023 *)
(2*Range[0, 60] +5)^2 -16 (* G. C. Greubel, Mar 23 2024 *)
PROG
(PARI) a(n)=4*n^2+20*n+9 \\ Charles R Greathouse IV, Jun 17 2017
(Magma) [(2*n+5)^2-16: n in [0..60]]; // G. C. Greubel, Mar 23 2024
(SageMath) [(2*n+5)^2-16 for n in range(61)] # G. C. Greubel, Mar 23 2024
CROSSREFS
Cf. A061041.
Sequence in context: A175369 A046895 A165392 * A092562 A103602 A205796
KEYWORD
nonn,easy,less
AUTHOR
Paul Curtz, Oct 25 2008
EXTENSIONS
More terms from Jinyuan Wang, Mar 23 2020
STATUS
approved