The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A122508 G.f.: 1/[(1-2x)(1+2x+3x^2)]. 0
 1, 0, 1, 6, 1, 12, 37, 18, 109, 240, 217, 894, 1657, 2196, 7021, 12138, 20197, 54264, 93025, 175446, 418609, 733596, 1471285, 3245250, 5872861, 12072960, 25344361, 47310126, 97782121, 199376292, 381642877, 786069018, 1577900629, 3075926280 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS G.f.=1/[x^3*p(1/x)], where p(x)=x^3-x-6 (1,6)-Padovan sequence with o.g.f. 1/(1-x^2-6*x^3). See A000931(n+3)for (1,1)Padovan, and the W. Lang link given there for an explicit formula and a combinatorial interpretation. [From Wolfdieter Lang, Jun 28 2010] LINKS Index entries for linear recurrences with constant coefficients, signature (0,1,6). FORMULA a(n+1) = (7*b(n) + 6*b(n-1) + 2^(n+2))/11, with b(n):=A088137(n+1)*(-1)^n. From the o.g.f. ((7+6*x)/(1+2*x+3*x^2)+ 4/(1-2*x))/11. [From Wolfdieter Lang, Jun 28 2010] MAPLE G:=x/(1-2*x)/(1+2*x+3*x^2): Gser:=series(G, x=0, 41): seq(coeff(Gser, x, n), n=0..38); MATHEMATICA p[x_]=-6 - x + x^3 q[x_] = ExpandAll[x^3*p[1/x]] Table[ SeriesCoefficient[Series[x/q[x], {x, 0, 30}], n], {n, 0, 30}] CROSSREFS Sequence in context: A090850 A163945 A013613 * A171006 A176121 A062190 Adjacent sequences:  A122505 A122506 A122507 * A122509 A122510 A122511 KEYWORD nonn,easy AUTHOR Roger L. Bagula, Sep 15 2006 EXTENSIONS Edited by N. J. A. Sloane, Oct 08 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 1 02:09 EDT 2020. Contains 334758 sequences. (Running on oeis4.)