login
A373845
Triangle read by rows: T(n,k) = arithmetic derivative of (1 + A002110(n) + A002110(k)), 1 <= k <= n, where A002110(n) is the n-th primorial number.
3
1, 6, 1, 14, 1, 1, 74, 38, 1, 1, 1551, 338, 1, 1, 1, 21084, 8631, 1330, 1, 1, 3550, 172655, 72938, 1970, 3410, 1, 1, 5822, 3233234, 4157356, 421750, 228491, 10190, 13610, 537398, 289610, 297753138, 32805527, 5188250, 8698439, 761710, 1, 18344100, 1, 6954431, 2156564414, 929540471, 68769335, 335525472, 4283242, 21900155, 348965439, 109820278, 185002, 32593310
OFFSET
1,2
COMMENTS
Arithmetic derivatives of the sums of three primorials, of which one is 1 [= A002110(0)], and two are > 1.
Ones occur in positions where 1 + A002110(n) + A002110(k) is a prime.
See also comments in A373844, and in A373848.
FORMULA
For n, k >= 1, T(n, k) = A003415(1+A370121(n, k)).
EXAMPLE
Triangle begins as:
1,
6, 1,
14, 1, 1,
74, 38, 1, 1,
1551, 338, 1, 1, 1,
21084, 8631, 1330, 1, 1, 3550,
172655, 72938, 1970, 3410, 1, 1, 5822,
3233234, 4157356, 421750, 228491, 10190, 13610, 537398, 289610,
297753138, 32805527, 5188250, 8698439, 761710, 1, 18344100, 1, 6954431,
etc.
PROG
(PARI)
A002110(n) = prod(i=1, n, prime(i));
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A373845(n) = { n--; my(c = (sqrtint(8*n + 1) - 1) \ 2, x=A002110(1+n - binomial(c + 1, 2))); A003415(1+(A002110(1+c)+x)); };
CROSSREFS
Cf. also A024451, A370129, A370138 (arithmetic derivative applied to the sums of a constant number of primorials).
Sequence in context: A122508 A171006 A176121 * A062190 A080211 A146997
KEYWORD
nonn,tabl
AUTHOR
Antti Karttunen, Jun 21 2024
STATUS
approved