login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370129
Triangle read by rows: T(n,k) = A003415(A002110(n)+A002110(k)), 0 <= k <= n; arithmetic derivatives of the sums of two primorial numbers.
6
1, 1, 4, 1, 12, 16, 1, 80, 60, 92, 1, 216, 540, 608, 704, 1, 3740, 3100, 4548, 6324, 8164, 568, 60080, 40060, 56292, 116208, 61768, 110752, 33975, 1021040, 1041768, 794468, 2415104, 1091004, 1357128, 1942844, 28300, 9789116, 29099520, 19722884, 18576860, 35347200, 35779644, 26575580, 37935056, 704080, 335024060
OFFSET
0,3
COMMENTS
Apart from those positions (A014545) at the left edge where a(n) = 1, a(n) <= A087112(1+n) only at n=2, 4 and 5, i.e., never after the third row.
FORMULA
a(n) = A003415(A370121(n)).
For n, k >= 1, T(n,k) = A002110(k)*A370136(n,k) + A024451(k)*A370135(n,k).
EXAMPLE
Triangle begins as:
1;
1, 4;
1, 12, 16;
1, 80, 60, 92;
1, 216, 540, 608, 704;
1, 3740, 3100, 4548, 6324, 8164;
568, 60080, 40060, 56292, 116208, 61768, 110752;
33975, 1021040, 1041768, 794468, 2415104, 1091004, 1357128, 1942844;
28300, 9789116, 29099520, 19722884, 18576860, 35347200, 35779644, 26575580, 37935056;
PROG
(PARI)
A002110(n) = prod(i=1, n, prime(i));
A370121(n) = { my(c = (sqrtint(8*n + 1) - 1) \ 2); (A002110(c) + A002110(n - binomial(c + 1, 2))); };
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
CROSSREFS
Cf. A014545 (positions of 1's at the left edge), A087112.
Cf. also A024451 (arithmetic derivatives of primorials).
Sequence in context: A338864 A078219 A373547 * A187541 A117413 A322970
KEYWORD
nonn,tabl
AUTHOR
Antti Karttunen, Feb 29 2024
STATUS
approved