login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370135
Triangle read by rows: T(n,k) = (A002110(n) + A002110(k)) / A002110(k), 1 <= k <= n.
4
2, 4, 2, 16, 6, 2, 106, 36, 8, 2, 1156, 386, 78, 12, 2, 15016, 5006, 1002, 144, 14, 2, 255256, 85086, 17018, 2432, 222, 18, 2, 4849846, 1616616, 323324, 46190, 4200, 324, 20, 2, 111546436, 37182146, 7436430, 1062348, 96578, 7430, 438, 24, 2, 3234846616, 1078282206, 215656442, 30808064, 2800734, 215442, 12674, 668, 30, 2
OFFSET
1,1
FORMULA
a(n) = A370134(n) / A002110(A002260(n)).
EXAMPLE
Triangle begins as:
2;
4, 2;
16, 6, 2;
106, 36, 8, 2;
1156, 386, 78, 12, 2;
15016, 5006, 1002, 144, 14, 2;
255256, 85086, 17018, 2432, 222, 18, 2;
4849846, 1616616, 323324, 46190, 4200, 324, 20, 2;
111546436, 37182146, 7436430, 1062348, 96578, 7430, 438, 24, 2;
MATHEMATICA
nn = 20; MapIndexed[Set[P[First[#2] - 1], #1] &, FoldList[Times, 1, Prime@ Range[nn + 1]]]; Table[(P[n] + P[k])/P[k], {n, nn}, {k, n}] (* Michael De Vlieger, Mar 08 2024 *)
PROG
(PARI)
A002110(n) = prod(i=1, n, prime(i));
A370135(n) = { n--; my(c = (sqrtint(8*n + 1) - 1) \ 2, x=A002110(1+n - binomial(c + 1, 2))); ((A002110(1+c)+x)/x); };
CROSSREFS
Cf. A002110, A002260, A370134, A370136 (arithmetic derivatives).
Sequence in context: A152877 A071353 A134763 * A290645 A152878 A186526
KEYWORD
nonn,tabl
AUTHOR
Antti Karttunen, Mar 07 2024
STATUS
approved