login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370128
Numbers k such that (A276086(k)/s)^s >= k^(s-1) and A276086(k) <= A003415(k), where A003415 is the arithmetic derivative, A276086 is the primorial base exp-function, and s = bigomega(k).
3
6, 213, 214, 2315, 2317, 2319, 2342, 2343, 2348, 2349, 2372, 2523, 2524, 2526, 2552, 4622, 4623, 4628, 4652, 6932, 6936, 6960, 30041, 30043, 30046, 30052, 30054, 30062, 30074, 30075, 30076, 30093, 30094, 30098, 30100, 30102, 30150, 30242, 30245, 30249, 30254, 30256, 30258, 30273, 30274, 30282, 32343, 32345, 32347
OFFSET
1,1
COMMENTS
Numbers k such that A003415(k) >= A276086(k) >= s * k^((s-1)/s), with s = A001222(k).
See comments in A370127.
LINKS
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
isA370128(n) = { my(x=A276086(n), s=bigomega(n)); ((x<=A003415(n)) && ((x/s)^s >= n^(s-1))); };
CROSSREFS
Setwise difference A351228 \ A370127.
Sequence in context: A002037 A071367 A332989 * A030265 A275567 A007221
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 22 2024
STATUS
approved