login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A373843
a(n) = gcd(n, A003415(A276085(n))), where A003415 is the arithmetic derivative and A276085 is the primorial base log-function.
3
1, 2, 1, 1, 5, 1, 1, 1, 1, 1, 1, 4, 1, 1, 3, 4, 1, 1, 19, 4, 1, 1, 1, 1, 1, 1, 1, 4, 1, 6, 1, 1, 3, 2, 5, 1, 1, 1, 1, 2, 1, 14, 1, 4, 1, 2, 47, 1, 1, 1, 1, 4, 1, 1, 5, 14, 1, 2, 1, 1, 1, 1, 1, 1, 5, 2, 1, 4, 1, 1, 1, 1, 1, 1, 3, 4, 1, 3, 79, 1, 3, 1, 1, 1, 5, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 21
OFFSET
1,2
FORMULA
a(n) = gcd(n, A373842(n)).
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A276085(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*prod(i=1, primepi(f[k, 1]-1), prime(i))); };
A373843(n) = gcd(n, A003415(A276085(n)));
CROSSREFS
Cf. also A327858 [= a(A276086(n))].
Sequence in context: A374358 A264878 A338035 * A110243 A169950 A088347
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 20 2024
STATUS
approved