login
This site is supported by donations to The OEIS Foundation.

 

Logo

The submissions stack has been unacceptably high for several months now. Please voluntarily restrict your submissions and please help with the editing. (We don't want to have to impose further limits.)

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A164608 Expansion of (1+4*x)/(1-8*x+8*x^2). 3
1, 12, 88, 608, 4160, 28416, 194048, 1325056, 9048064, 61784064, 421888000, 2880831488, 19671547904, 134325731328, 917233467392, 6263261888512, 42768227368960, 292039723843584, 1994171971796992, 13617057983627264 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Binomial transform of A054490. Fourth binomial transform of A164683. Inverse binomial transform of A164609.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..149

Index entries for linear recurrences with constant coefficients, signature (8,-8).

FORMULA

a(n) = 8*a(n-1)-8*a(n-2) for n > 1; a(0) = 1, a(1) = 12.

a(n) = A057084(n) + 4*A057084(n-1).

a(n) = ((2+4*sqrt(2))*(4+2*sqrt(2))^n+(2-4*sqrt(2))*(4-2*sqrt(2))^n)/4.

PROG

(MAGMA) Z<x>:=PolynomialRing(Integers()); N<r>:=NumberField(x^2-2); S:=[ ((2+4*r)*(4+2*r)^n+(2-4*r)*(4-2*r)^n)/4: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; [From Klaus Brockhaus, Aug 22 2009]

CROSSREFS

Cf. A054490, A164683, A164609.

Sequence in context: A178257 A057406 A125349 * A081009 A155635 A126507

Adjacent sequences:  A164605 A164606 A164607 * A164609 A164610 A164611

KEYWORD

nonn,easy

AUTHOR

Al Hakanson (hawkuu(AT)gmail.com), Aug 17 2009

EXTENSIONS

Edited and extended beyond a(5) by Klaus Brockhaus, Aug 22 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified August 28 08:35 EDT 2015. Contains 261118 sequences.