login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 10*a(n-1) - 17*a(n-2) for n > 1; a(0) = 1, a(1) = 21.
2

%I #15 Sep 08 2022 08:45:47

%S 1,21,193,1573,12449,97749,765857,5996837,46948801,367541781,

%T 2877288193,22524671653,176332817249,1380408754389,10806429650657,

%U 84597347681957,662264172758401,5184486816990741,40586377233014593,317727496441303333

%N a(n) = 10*a(n-1) - 17*a(n-2) for n > 1; a(0) = 1, a(1) = 21.

%C Binomial transform of A164605. Fifth binomial transform of A164702.

%H G. C. Greubel, <a href="/A164606/b164606.txt">Table of n, a(n) for n = 0..1000</a> (terms 0..144 from Vincenzo Librandi)

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (10, -17).

%F a(n) = 10*a(n-1) - 17*a(n-2) for n > 1; a(0) = 1, a(1) = 21.

%F a(n) = ((1+4*sqrt(2))*(5+2*sqrt(2))^n + (1-4*sqrt(2))*(5-2*sqrt(2))^n)/2.

%F G.f.: (1+11*x)/(1-10*x+17*x^2).

%F E.g.f.: exp(5*x)*(cosh(2*sqrt(2)*x) + 4*sqrt(2)*sinh(2*sqrt(2)*x)). - _G. C. Greubel_, Aug 10 2017

%t LinearRecurrence[{10,-17},{1,21},30] (* _Harvey P. Dale_, May 22 2013 *)

%o (Magma) Z<x>:=PolynomialRing(Integers()); N<r>:=NumberField(x^2-2); S:=[ ((1+4*r)*(5+2*r)^n+(1-4*r)*(5-2*r)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // _Klaus Brockhaus_, Aug 23 2009

%o (PARI) x='x+O('x^50); Vec((1+11*x)/(1-10*x+17*x^2)) \\ _G. C. Greubel_, Aug 10 2017

%Y Cf. A164605, A164702.

%K nonn,easy

%O 0,2

%A Al Hakanson (hawkuu(AT)gmail.com), Aug 17 2009

%E Edited and extended beyond a(5) by _Klaus Brockhaus_, Aug 23 2009