login
A228884
Determinant of the n X n matrix with (i,j)-entry equal to the greatest common divisor of i-j and n.
2
1, 1, 3, 20, 128, 2304, 10800, 606528, 3932160, 141087744, 1289945088, 210000000000, 335544320000, 222902511206400, 804545281732608, 39137889484800000, 972777519512027136, 608742554432415203328, 391804906912468697088, 1455817098785971890290688, 968232702940866945220608
OFFSET
0,3
COMMENTS
Conjecture: (i) a(n) is always positive and divisible by Phi(n)^{Phi(n)}*sum_{d|n}Phi(d)*n/d, where Phi(n) is Euler's totient function.
(ii) For any composite number n, all prime divisors of a(n) are smaller than n.
It is easy to show that a(n) is divisible by Sum_{d|n} Phi(d)*n/d = Sum_{k=1..n} gcd(k,n), and a(p) = (p-1)^{p-1}*(2p-1) for any prime p.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..388 (terms n = 1..100 from Zhi-Wei Sun)
EXAMPLE
a(1) = 1 since gcd(1-1,1) = 1.
MAPLE
a:= n-> LinearAlgebra[Determinant](Matrix(n, (i, j)-> igcd(i-j, n))):
seq(a(n), n=0..20); # Alois P. Heinz, Nov 03 2024
MATHEMATICA
a[n_]:=Det[Table[GCD[i-j, n], {i, 1, n}, {j, 1, n}]]
Table[a[n], {n, 1, 20}]
CROSSREFS
Cf. A228885.
Sequence in context: A228750 A187442 A167590 * A138910 A000276 A216778
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Sep 06 2013
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Nov 03 2024
STATUS
approved