|
|
A228884
|
|
Determinant of the n X n matrix with (i,j)-entry equal to the greatest common divisor of i-j and n.
|
|
2
|
|
|
1, 3, 20, 128, 2304, 10800, 606528, 3932160, 141087744, 1289945088, 210000000000, 335544320000, 222902511206400, 804545281732608, 39137889484800000, 972777519512027136, 608742554432415203328, 391804906912468697088, 1455817098785971890290688, 968232702940866945220608
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Conjecture: (i) a(n) is always positive and divisible by Phi(n)^{Phi(n)}*sum_{d|n}Phi(d)*n/d, where Phi(n) is Euler's totient function.
(ii) For any composite number n, all prime divisors of a(n) are smaller than n.
It is easy to show that a(n) is divisible by sum_[d|n}Phi(d)*n/d) = sum_{k=1,...,n}gcd(k,n), and a(p) = (p-1)^{p-1}*(2p-1) for any prime p.
|
|
LINKS
|
|
|
EXAMPLE
|
a(1) = 1 since gcd(1-1,1) = 1.
|
|
MATHEMATICA
|
a[n_]:=Det[Table[GCD[i-j, n], {i, 1, n}, {j, 1, n}]]
Table[a[n], {n, 1, 20}]
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|